Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 1, Pages 136–142
DOI: https://doi.org/10.17377/smzh.2018.59.112
(Mi smj2960)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the number of Vedernikov–Ein irreducible components of the moduli space of stable rank 2 bundles on the projective space

N. N. Osipova, S. A. Tikhomirovbc

a Siberian Federal University, Krasnoyarsk, Russia
b Yaroslavl' State Pedagogical University, Yaroslavl', Russia
c Koryazhma Branch of Northern (Arctic) Federal University, Koryazhma, Russia
Full-text PDF (292 kB) Citations (6)
References:
Abstract: We propose a method for finding the exact number of Vedernikov–Ein irreducible components of the first and second types in the moduli space $M(0,n)$ of stable rank 2 bundles on the projective space $\mathbb P^3$ with Chern classes $c_1=0$ and $c_2=n\geq1$. We give formulas for the number of Vedernikov–Ein components and find a criterion for their existence for arbitrary $n\geq1$.
Keywords: stable bundle, Chern classes, moduli space, Pell equations.
Received: 03.02.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 1, Pages 107–112
DOI: https://doi.org/10.1134/S0037446618010123
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: Russian
Citation: N. N. Osipov, S. A. Tikhomirov, “On the number of Vedernikov–Ein irreducible components of the moduli space of stable rank 2 bundles on the projective space”, Sibirsk. Mat. Zh., 59:1 (2018), 136–142; Siberian Math. J., 59:1 (2018), 107–112
Citation in format AMSBIB
\Bibitem{OsiTik18}
\by N.~N.~Osipov, S.~A.~Tikhomirov
\paper On the number of Vedernikov--Ein irreducible components of the moduli space of stable rank~2 bundles on the projective space
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 1
\pages 136--142
\mathnet{http://mi.mathnet.ru/smj2960}
\crossref{https://doi.org/10.17377/smzh.2018.59.112}
\elib{https://elibrary.ru/item.asp?id=32824596}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 1
\pages 107--112
\crossref{https://doi.org/10.1134/S0037446618010123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427144300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043497549}
Linking options:
  • https://www.mathnet.ru/eng/smj2960
  • https://www.mathnet.ru/eng/smj/v59/i1/p136
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :80
    References:35
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024