Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 1, Pages 130–135
DOI: https://doi.org/10.17377/smzh.2018.59.111
(Mi smj2959)
 

This article is cited in 3 scientific papers (total in 3 papers)

Alternative proof of Mironov's results on commuting self-adjoint operators of rank 2

V. S. Oganesyan

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (252 kB) Citations (3)
References:
Abstract: We give an alternative proof of Mironov's results on commuting self-adjoint operators of rank 2. Mironov's proof is based on Krichever's complicated theory of the existence of a high-rank Baker–Akhiezer function. In contrast to Mironov's proof, our proof is simpler but the results are slightly weaker. Note that the method of this article can be extended to matrix operators. Using the method, we can construct the first explicit examples of matrix commuting differential operators of rank 2 and arbitrary genus.
Keywords: commuting differential operators.
Funding agency Grant number
Russian Science Foundation 16-11-10260
The research was carried out at the Department of Mechanics and Mathematics of Moscow State University and supported by the Russian Science Foundation (Grant 16-11-10260).
Received: 24.04.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 1, Pages 102–106
DOI: https://doi.org/10.1134/S0037446618010111
Bibliographic databases:
Document Type: Article
UDC: 517.926
MSC: 35R30
Language: Russian
Citation: V. S. Oganesyan, “Alternative proof of Mironov's results on commuting self-adjoint operators of rank 2”, Sibirsk. Mat. Zh., 59:1 (2018), 130–135; Siberian Math. J., 59:1 (2018), 102–106
Citation in format AMSBIB
\Bibitem{Oga18}
\by V.~S.~Oganesyan
\paper Alternative proof of Mironov's results on commuting self-adjoint operators of rank~2
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 1
\pages 130--135
\mathnet{http://mi.mathnet.ru/smj2959}
\crossref{https://doi.org/10.17377/smzh.2018.59.111}
\elib{https://elibrary.ru/item.asp?id=32824594}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 1
\pages 102--106
\crossref{https://doi.org/10.1134/S0037446618010111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427144300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043517647}
Linking options:
  • https://www.mathnet.ru/eng/smj2959
  • https://www.mathnet.ru/eng/smj/v59/i1/p130
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :58
    References:32
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024