Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 5, Pages 1181–1190
DOI: https://doi.org/10.17377/smzh.2017.58.519
(Mi smj2929)
 

Some notes on the rank of a finite soluble group

L. Zhanga, W. Guoa, A. N. Skibab

a Department of Mathematics, University of Science and Technology of China, Hefei, P. R. China
b Department of Mathematics, Francisk Skorina Gomel State University, Gomel, Belarus
References:
Abstract: Let $G$ be a finite group and let $\sigma=\{\sigma_i|i\in I\}$ be some partition of the set $\mathbb P$ of all primes. Then $G$ is called $\sigma$-nilpotent if $G=A_1\times\cdots\times A_r$, where $A_i$ is a $\sigma_{i_j}$-group for some $i_j=i_j(A_i)$. A collection $\mathscr H$ of subgroups of $G$ is a complete Hall $\sigma$-set in $G$ if each member $\ne1$ of $\mathscr H$ is a Hall $\sigma_i$-subgroup of $G$ for some $i\in I$ and $\mathscr H$ has exactly one Hall $\sigma_i$-subgroup of $G$ for every $i$ such that $\sigma_i\cap\pi(G)\ne\emptyset$. A subgroup $A$ of $G$ is called$\sigma$-quasinormal or $\sigma$-permutable [1] in $G$ if $G$ possesses a complete Hall $\sigma$-set $\mathscr H$ such that $AH^x=H^xA$ for all $H\in\mathscr H$ and $x\in G$. The symbol $r(G)$ ($r_p(G)$) denotes the rank ($p$-rank$G$.
Assume that $\mathscr H$ is a complete Hall $\sigma$-set of $G$. We prove that (i) if $G$ is soluble, $r(H)\leq r\in\mathbb N$ for all $H\in\mathscr H$ and every $n$-maximal subgroup of $G$ $(n>1)$ is $\sigma$-quasinormal in $G$, then $r(G)\leq n+r-2$; (ii) if every member in $\mathscr H$ is soluble and every $n$-minimal subgroup of $G$ is $\sigma$-quasinormal in $G$, then $G$ is soluble and $r_p(G)\leq n+r_p(H)-1$ for all $H\in\mathscr H$ and odd $p\in\pi (H)$.
Keywords: finite group, rank of a soluble group, $\sigma$-quasinormal subgroup, $n$-maximal subgroup, $\sigma$-soluble group.
Funding agency Grant number
National Natural Science Foundation of China #11771409
Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences
The authors were supported by the NNSF of China (Grant #11771409) and theWuWen-Tsun Key Laboratory of Mathematics of the Chinese Academy of Sciences.
Received: 26.06.2017
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 5, Pages 915–922
DOI: https://doi.org/10.1134/S0037446617050196
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 35R30
Language: Russian
Citation: L. Zhang, W. Guo, A. N. Skiba, “Some notes on the rank of a finite soluble group”, Sibirsk. Mat. Zh., 58:5 (2017), 1181–1190; Siberian Math. J., 58:5 (2017), 915–922
Citation in format AMSBIB
\Bibitem{ZhaGuoSki17}
\by L.~Zhang, W.~Guo, A.~N.~Skiba
\paper Some notes on the rank of a~finite soluble group
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 5
\pages 1181--1190
\mathnet{http://mi.mathnet.ru/smj2929}
\crossref{https://doi.org/10.17377/smzh.2017.58.519}
\elib{https://elibrary.ru/item.asp?id=29947482}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 5
\pages 915--922
\crossref{https://doi.org/10.1134/S0037446617050196}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413438200019}
\elib{https://elibrary.ru/item.asp?id=31068063}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032033510}
Linking options:
  • https://www.mathnet.ru/eng/smj2929
  • https://www.mathnet.ru/eng/smj/v58/i5/p1181
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025