|
$X$-decomposable finite groups for $X=\{1,m,m+1,m+2\}$
R. Chena, X. Guob, K. P. Shumc a College of Mathematics and Information Science, Henan Normal University, Henan, P. R. China
b Department of Mathematics, Shanghai University, Shanghai, P. R. China
c Institute of Mathematics, Yunnan University, Kunming, P. R. China
Abstract:
A normal subgroup $N$ of a finite group $G$ is called $n$-decomposable in $G$ if $N$ is the union of $n$ distinct $G$-conjugacy classes. We study the structure of nonperfect groups in which every proper nontrivial normal subgroup is $m$-decomposable, $m+1$-decomposable, or $m+2$-decomposable for some positive integer $m$. Furthermore, we give classification for the soluble case.
Keywords:
soluble group, $G$-conjugacy class, $n$-decomposable.
Received: 27.07.2016
Citation:
R. Chen, X. Guo, K. P. Shum, “$X$-decomposable finite groups for $X=\{1,m,m+1,m+2\}$”, Sibirsk. Mat. Zh., 58:5 (2017), 1159–1169; Siberian Math. J., 58:5 (2017), 899–906
Linking options:
https://www.mathnet.ru/eng/smj2927 https://www.mathnet.ru/eng/smj/v58/i5/p1159
|
Statistics & downloads: |
Abstract page: | 174 | Full-text PDF : | 37 | References: | 39 | First page: | 6 |
|