Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 5, Pages 1110–1127
DOI: https://doi.org/10.17377/smzh.2017.58.513
(Mi smj2923)
 

This article is cited in 8 scientific papers (total in 8 papers)

Weak solvability of the generalized Voigt viscoelasticity model

V. P. Orlova, D. A. Rodeb, M. A. Plievcd

a Voronezh State University, Institute of Mathematics, Voronezh, Russia
b Voronezh State University, Voronezh, Russia
c Southern Mathematical Institute, Vladikavkaz, Russia
d Peoples' Friendship University of Russia, Moscow, Russia
Full-text PDF (335 kB) Citations (8)
References:
Abstract: We establish the existence and uniqueness of a weak solution to an initial boundary value problem for the system of the motion equations of a fluid that is a fractional analog of the Voigt viscoelasticity model. The rheological equation of the model contains fractional derivatives.
Keywords: viscoelastic medium, motion equations, initial boundary value problem, weak solution, Voigt viscoelasticity model, fractional derivative.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Z50.31.0037
The first author was supported by the Ministry of Education and Science of the Russian Federation (Grant 14.Z50.31.0037).
Received: 19.03.2017
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 5, Pages 859–874
DOI: https://doi.org/10.1134/S0037446617050135
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. P. Orlov, D. A. Rode, M. A. Pliev, “Weak solvability of the generalized Voigt viscoelasticity model”, Sibirsk. Mat. Zh., 58:5 (2017), 1110–1127; Siberian Math. J., 58:5 (2017), 859–874
Citation in format AMSBIB
\Bibitem{OrlRodPli17}
\by V.~P.~Orlov, D.~A.~Rode, M.~A.~Pliev
\paper Weak solvability of the generalized Voigt viscoelasticity model
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 5
\pages 1110--1127
\mathnet{http://mi.mathnet.ru/smj2923}
\crossref{https://doi.org/10.17377/smzh.2017.58.513}
\elib{https://elibrary.ru/item.asp?id=29947476}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 5
\pages 859--874
\crossref{https://doi.org/10.1134/S0037446617050135}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413438200013}
\elib{https://elibrary.ru/item.asp?id=31091504}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032031821}
Linking options:
  • https://www.mathnet.ru/eng/smj2923
  • https://www.mathnet.ru/eng/smj/v58/i5/p1110
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :77
    References:55
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024