Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 5, Pages 1035–1050
DOI: https://doi.org/10.17377/smzh.2017.58.507
(Mi smj2917)
 

This article is cited in 3 scientific papers (total in 3 papers)

Universal geometrical equivalence of the algebraic structures of common signature

E. Yu. Daniyarovaa, A. G. Myasnikovb, V. N. Remeslennikova

a Sobolev Institute of Mathematics, Omsk Branch, Omsk, Russia
b School of Engineering & Science, Stevens Institute of Technology, Hoboken NJ, USA
Full-text PDF (360 kB) Citations (3)
References:
Abstract: This article is a part of our effort to explain the foundations of algebraic geometry over arbitrary algebraic structures [1–8]. We introduce the concept of universal geometrical equivalence of two algebraic structures $\mathscr A$ and $\mathscr B$ of a common language {\tt L} which strengthens the available concept of geometrical equivalence and expresses the maximal affinity between $\mathscr A$ and $\mathscr B$ from the viewpoint of their algebraic geometries. We establish a connection between universal geometrical equivalence and universal equivalence in the sense of equality of universal theories.
Keywords: universal algebraic geometry, algebraic structure, universal geometrical equivalence, universal equivalence, universal class.
Funding agency Grant number
Russian Science Foundation 17-11-01117
The authors were supported by the Russian Science Foundation (Grant 17-11-01117).
Received: 09.06.2017
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 5, Pages 801–812
DOI: https://doi.org/10.1134/S003744661705007X
Bibliographic databases:
Document Type: Article
UDC: 510.67+512.71
MSC: 35R30
Language: Russian
Citation: E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Universal geometrical equivalence of the algebraic structures of common signature”, Sibirsk. Mat. Zh., 58:5 (2017), 1035–1050; Siberian Math. J., 58:5 (2017), 801–812
Citation in format AMSBIB
\Bibitem{DanMyaRem17}
\by E.~Yu.~Daniyarova, A.~G.~Myasnikov, V.~N.~Remeslennikov
\paper Universal geometrical equivalence of the algebraic structures of common signature
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 5
\pages 1035--1050
\mathnet{http://mi.mathnet.ru/smj2917}
\crossref{https://doi.org/10.17377/smzh.2017.58.507}
\elib{https://elibrary.ru/item.asp?id=29947470}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 5
\pages 801--812
\crossref{https://doi.org/10.1134/S003744661705007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413438200007}
\elib{https://elibrary.ru/item.asp?id=31068917}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032018682}
Linking options:
  • https://www.mathnet.ru/eng/smj2917
  • https://www.mathnet.ru/eng/smj/v58/i5/p1035
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :178
    References:43
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024