|
Lie algebras induced by a nonzero field derivation
A. G. Gein Ural Federal University, Ekaterinburg, Russia
Abstract:
Given a finite-dimensional associative commutative algebra $A$ over a field $F$, we define the structure of a Lie algebra using a nonzero derivation $D$ of $A$. If $A$ is a field and $\operatorname{char}F>3$; then the corresponding algebra is simple, presenting a nonisomorphic analog of the Zassenhaus algebra $W_1(m)$.
Keywords:
simple Lie algebra, field derivation, Zassenhaus algebra, $A$-algebra.
Received: 15.09.2016
Citation:
A. G. Gein, “Lie algebras induced by a nonzero field derivation”, Sibirsk. Mat. Zh., 58:5 (2017), 1015–1025; Siberian Math. J., 58:5 (2017), 786–793
Linking options:
https://www.mathnet.ru/eng/smj2915 https://www.mathnet.ru/eng/smj/v58/i5/p1015
|
Statistics & downloads: |
Abstract page: | 159 | Full-text PDF : | 45 | References: | 43 | First page: | 6 |
|