Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 5, Pages 959–971
DOI: https://doi.org/10.17377/smzh.2017.58.501
(Mi smj2911)
 

This article is cited in 11 scientific papers (total in 11 papers)

Dual automorphism-invariant modules over perfect rings

A. N. Abyzova, T. C. Quynhb, D. D. Taic

a Kazan (Volga Region) Federal University, Kazan, Russia
b Department of Mathematics, Danang University, Danang City, Vietnam
c Faculty of Mathematics, Vinh University, Vinh City, Vietnam
References:
Abstract: Under study are the dual automorphism-invariant modules and pseudoprojective modules. Some conditions were found under which the dual automorphism-invariant module over a perfect ring is quasiprojective. We also show that if $R$ is a right perfect ring then a pseudoprojective right $R$-module $M$ is finitely generated if and only if $M$ is a Hopf module.
Keywords: dual automorphism-invariant module, pseudoprojective module, perfect ring, Hopf module.
Funding agency Grant number
National Foundation for Science and Technology Development Vietnam 101.04-2017.22
The second and third authors were partially supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED; Grant 101.04-2017.22).
Received: 02.09.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 5, Pages 743–751
DOI: https://doi.org/10.1134/S0037446617050019
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: A. N. Abyzov, T. C. Quynh, D. D. Tai, “Dual automorphism-invariant modules over perfect rings”, Sibirsk. Mat. Zh., 58:5 (2017), 959–971; Siberian Math. J., 58:5 (2017), 743–751
Citation in format AMSBIB
\Bibitem{AbyQuyTai17}
\by A.~N.~Abyzov, T.~C.~Quynh, D.~D.~Tai
\paper Dual automorphism-invariant modules over perfect rings
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 5
\pages 959--971
\mathnet{http://mi.mathnet.ru/smj2911}
\crossref{https://doi.org/10.17377/smzh.2017.58.501}
\elib{https://elibrary.ru/item.asp?id=29947464}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 5
\pages 743--751
\crossref{https://doi.org/10.1134/S0037446617050019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413438200001}
\elib{https://elibrary.ru/item.asp?id=31068706}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031998392}
Linking options:
  • https://www.mathnet.ru/eng/smj2911
  • https://www.mathnet.ru/eng/smj/v58/i5/p959
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :72
    References:59
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024