Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 3, Pages 673–685
DOI: https://doi.org/10.17377/smzh.2017.58.315
(Mi smj2888)
 

This article is cited in 2 scientific papers (total in 2 papers)

Some properties of solutions to a family of integral equations arising in the models of living systems

N. V. Pertsev

Sobolev Institute of Mathematics, Omsk Branch, Omsk, Russia
Full-text PDF (283 kB) Citations (2)
References:
Abstract: We consider the well-posedness problem of nonlinear integral and differential equations with delay which arises in the elaboration of mathematical models of living systems. The questions of existence, uniqueness, and nonnegativity of solutions to these systems on an infinite semiaxis are studied as well as continuous dependence of solutions on the initial data on finite time segments.
Keywords: nonlinear integral equation, differential equation with delay, global solvability, nonnegativity of a solution, mathematical model, well-posedness, living system.
Received: 15.06.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 3, Pages 525–535
DOI: https://doi.org/10.1134/S0037446617030156
Bibliographic databases:
Document Type: Article
UDC: 517.968.4+517.929
MSC: 35R30
Language: Russian
Citation: N. V. Pertsev, “Some properties of solutions to a family of integral equations arising in the models of living systems”, Sibirsk. Mat. Zh., 58:3 (2017), 673–685; Siberian Math. J., 58:3 (2017), 525–535
Citation in format AMSBIB
\Bibitem{Per17}
\by N.~V.~Pertsev
\paper Some properties of solutions to a~family of integral equations arising in the models of living systems
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 3
\pages 673--685
\mathnet{http://mi.mathnet.ru/smj2888}
\crossref{https://doi.org/10.17377/smzh.2017.58.315}
\elib{https://elibrary.ru/item.asp?id=29160457}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 3
\pages 525--535
\crossref{https://doi.org/10.1134/S0037446617030156}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404212100015}
\elib{https://elibrary.ru/item.asp?id=31023080}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021302975}
Linking options:
  • https://www.mathnet.ru/eng/smj2888
  • https://www.mathnet.ru/eng/smj/v58/i3/p673
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :36
    References:28
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024