Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 3, Pages 573–590
DOI: https://doi.org/10.17377/smzh.2017.58.308
(Mi smj2881)
 

This article is cited in 9 scientific papers (total in 9 papers)

Integral representation and embedding theorems for $n$-dimensional multianisotropic spaces with one anisotropic vertex

G. A. Karapetyan

Russian-Armenian (Slavonic) University, Yerevan, Armenia
Full-text PDF (361 kB) Citations (9)
References:
Abstract: We prove embedding theorems for the multianisotropic Sobolev spaces generated by the completely regular Newton polyhedron. Under study is the case of the polyhedron with one anisotropic vertex. We obtain a special integral representation of functions in terms of the tuple of multi-indices of the Newton polyhedron.
Keywords: embedding theorems, multianisotropic space, completely regular polyhedron, integral representation.
Funding agency Grant number
Ministry of Education and Science of the Republic of Armenia 15T-1A197
The author was supported by the Ministry for the Education and Science of the Republic of Armenia (Project Code SCS 15T-1A197).
Received: 23.06.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 3, Pages 445–460
DOI: https://doi.org/10.1134/S0037446617030089
Bibliographic databases:
Document Type: Article
UDC: 517.518.23
MSC: 35R30
Language: Russian
Citation: G. A. Karapetyan, “Integral representation and embedding theorems for $n$-dimensional multianisotropic spaces with one anisotropic vertex”, Sibirsk. Mat. Zh., 58:3 (2017), 573–590; Siberian Math. J., 58:3 (2017), 445–460
Citation in format AMSBIB
\Bibitem{Kar17}
\by G.~A.~Karapetyan
\paper Integral representation and embedding theorems for $n$-dimensional multianisotropic spaces with one anisotropic vertex
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 3
\pages 573--590
\mathnet{http://mi.mathnet.ru/smj2881}
\crossref{https://doi.org/10.17377/smzh.2017.58.308}
\elib{https://elibrary.ru/item.asp?id=29160450}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 3
\pages 445--460
\crossref{https://doi.org/10.1134/S0037446617030089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404212100008}
\elib{https://elibrary.ru/item.asp?id=31028584}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021276248}
Linking options:
  • https://www.mathnet.ru/eng/smj2881
  • https://www.mathnet.ru/eng/smj/v58/i3/p573
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :72
    References:46
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024