Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 3, Pages 530–542
DOI: https://doi.org/10.17377/smzh.2017.58.305
(Mi smj2878)
 

This article is cited in 2 scientific papers (total in 2 papers)

Spherical cubature formulas in Sobolev spaces

V. L. Vaskevichab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (303 kB) Citations (2)
References:
Abstract: We study sequences of cubature formulas on the unit sphere in a multidimensional Euclidean space. The grids for the cubature formulas under consideration embed in each other consecutively, forming in the limit a dense subset on the initial sphere. As the domain of cubature formulas, i.e. as the class of integrands, we take spherical Sobolev spaces. These spaces may have fractional smoothness. We prove that, among all possible spherical cubature formulas with given grid, there exists and is unique a formula with the least norm of the error, an optimal formula. The weights of the optimal cubature formula are shown to be solutions to a special nondegenerate system of linear equations. We prove that the errors of cubature formulas tend to zero as the number of nodes grows indefinitely.
Keywords: spherical cubature formula, error, Sobolev-like space on a multidimensional sphere, embedding constant, embedding function, optimal formula.
Received: 24.06.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 3, Pages 408–418
DOI: https://doi.org/10.1134/S0037446617030053
Bibliographic databases:
Document Type: Article
UDC: 517.518.23+517.518.83+519.651
MSC: 35R30
Language: Russian
Citation: V. L. Vaskevich, “Spherical cubature formulas in Sobolev spaces”, Sibirsk. Mat. Zh., 58:3 (2017), 530–542; Siberian Math. J., 58:3 (2017), 408–418
Citation in format AMSBIB
\Bibitem{Vas17}
\by V.~L.~Vaskevich
\paper Spherical cubature formulas in Sobolev spaces
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 3
\pages 530--542
\mathnet{http://mi.mathnet.ru/smj2878}
\crossref{https://doi.org/10.17377/smzh.2017.58.305}
\elib{https://elibrary.ru/item.asp?id=29160447}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 3
\pages 408--418
\crossref{https://doi.org/10.1134/S0037446617030053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404212100005}
\elib{https://elibrary.ru/item.asp?id=31028377}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021270116}
Linking options:
  • https://www.mathnet.ru/eng/smj2878
  • https://www.mathnet.ru/eng/smj/v58/i3/p530
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :66
    References:41
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024