|
This article is cited in 2 scientific papers (total in 2 papers)
An extremal problem in the Hardy space $H_p$, $0<p<\infty$
Kh. Kh. Burchaeva, V. G. Ryabykhb, G. Yu. Ryabykhc a Chechnya State University, Groznyĭ, Russia
b Southern Federal University, Rostov-on-Don, Russia
c Don State Technical University, Rostov-on-Don, Russia
Abstract:
We prove that if the function determining a linear functional over the Hardy space is analytic on the disk of radius greater than 1 then the extremal function of this functional is analytic on the same disk.
Keywords:
Hardy space, linear functional, extremal function, uniqueness, derivative.
Received: 26.05.2016
Citation:
Kh. Kh. Burchaev, V. G. Ryabykh, G. Yu. Ryabykh, “An extremal problem in the Hardy space $H_p$, $0<p<\infty$”, Sibirsk. Mat. Zh., 58:3 (2017), 510–525; Siberian Math. J., 58:3 (2017), 392–404
Linking options:
https://www.mathnet.ru/eng/smj2876 https://www.mathnet.ru/eng/smj/v58/i3/p510
|
Statistics & downloads: |
Abstract page: | 327 | Full-text PDF : | 60 | References: | 51 | First page: | 5 |
|