Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 2, Pages 251–269
DOI: https://doi.org/10.17377/smzh.2017.58.202
(Mi smj2857)
 

This article is cited in 4 scientific papers (total in 4 papers)

Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions

O. L. Vinogradov

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (382 kB) Citations (4)
References:
Abstract: We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol'skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.
Keywords: inequalities of Akhiezer–Kreĭn–Favard type, entire function of exponential type, convolution.
Received: 08.04.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 2, Pages 190–204
DOI: https://doi.org/10.1134/S0037446617020021
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 35R30
Language: Russian
Citation: O. L. Vinogradov, “Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions”, Sibirsk. Mat. Zh., 58:2 (2017), 251–269; Siberian Math. J., 58:2 (2017), 190–204
Citation in format AMSBIB
\Bibitem{Vin17}
\by O.~L.~Vinogradov
\paper Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 2
\pages 251--269
\mathnet{http://mi.mathnet.ru/smj2857}
\crossref{https://doi.org/10.17377/smzh.2017.58.202}
\elib{https://elibrary.ru/item.asp?id=29160425}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 2
\pages 190--204
\crossref{https://doi.org/10.1134/S0037446617020021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400087100002}
\elib{https://elibrary.ru/item.asp?id=29525169}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018830343}
Linking options:
  • https://www.mathnet.ru/eng/smj2857
  • https://www.mathnet.ru/eng/smj/v58/i2/p251
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :91
    References:43
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024