Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 2, Pages 243–250
DOI: https://doi.org/10.17377/smzh.2017.58.201
(Mi smj2856)
 

This article is cited in 18 scientific papers (total in 18 papers)

Differences of idempotents in $C^*$-algebras

A. M. Bikchentaev

Lobachevskiĭ Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan, Russia
References:
Abstract: Suppose that $P$ and $Q$ are idempotents on a Hilbert space $\mathscr H$, while $Q=Q^*$ and $I$ is the identity operator in $\mathscr H$. If $U=P-Q$ is an isometry then $U=U^*$ is unitary and $Q=I-P$. We establish a double inequality for the infimum and the supremum of $P$ and $Q$ in $\mathscr H$ and $P-Q$. Applications of this inequality are obtained to the characterization of a trace and ideal $F$-pseudonorms on a $W^*$-algebra. Let $\varphi$ be a trace on the unital $C^*$-algebra $\mathscr A$ and let tripotents $P$ and $Q$ belong to $\mathscr A$. If $P-Q$ belongs to the domain of definition of $\varphi$ then $\varphi(P-Q)$ is a real number. The commutativity of some operators is established.
Keywords: Hilbert space, linear operator, idempotent, tripotent, projection, unitary operator, trace class operator, operator inequality, commutativity, $W^*$-algebra, $C^*$-algebra, trace, ideal $F$-norm.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02433
The author was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (Grant 15-41-02433).
Received: 21.03.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 2, Pages 183–189
DOI: https://doi.org/10.1134/S003744661702001X
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 35R30
Language: Russian
Citation: A. M. Bikchentaev, “Differences of idempotents in $C^*$-algebras”, Sibirsk. Mat. Zh., 58:2 (2017), 243–250; Siberian Math. J., 58:2 (2017), 183–189
Citation in format AMSBIB
\Bibitem{Bik17}
\by A.~M.~Bikchentaev
\paper Differences of idempotents in $C^*$-algebras
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 2
\pages 243--250
\mathnet{http://mi.mathnet.ru/smj2856}
\crossref{https://doi.org/10.17377/smzh.2017.58.201}
\elib{https://elibrary.ru/item.asp?id=29160424}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 2
\pages 183--189
\crossref{https://doi.org/10.1134/S003744661702001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400087100001}
\elib{https://elibrary.ru/item.asp?id=29489196}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018846386}
Linking options:
  • https://www.mathnet.ru/eng/smj2856
  • https://www.mathnet.ru/eng/smj/v58/i2/p243
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:508
    Full-text PDF :317
    References:182
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024