Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 1, Pages 148–164
DOI: https://doi.org/10.17377/smzh.2017.58.115
(Mi smj2848)
 

This article is cited in 13 scientific papers (total in 13 papers)

Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids

A. E. Mamontov, D. A. Prokudin

Lavrent'ev Institute of Hydrodynamics, Novosibirsk, Russia
References:
Abstract: We consider the boundary value problem describing the steady barotropic motion of a multicomponent mixture of viscous compressible fluids in a bounded three-dimensional domain. We assume that the material derivative operator is common to all components and is defined by the average velocity of the motion, but keep separate velocities of the components in other terms. Pressure is common and depends on the total density. Beyond that we make no simplifying assumptions, including those on the structure of the viscosity matrix; i.e., we keep all terms in the equations, which naturally generalize the Navier–Stokes model of the motion of one-component media. We establish the existence of weak solutions to the boundary value problem.
Keywords: existence theorem, steady boundary value problem, viscous compressible fluid, homogeneous mixture with multiple velocities, effective viscous flux.
Funding agency Grant number
Russian Science Foundation 15-11-20019
The authors were supported by the Russian Science Foundation (Grant 15-11-20019).
Received: 29.02.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 1, Pages 113–127
DOI: https://doi.org/10.1134/S0037446617010153
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35R30
Language: Russian
Citation: A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids”, Sibirsk. Mat. Zh., 58:1 (2017), 148–164; Siberian Math. J., 58:1 (2017), 113–127
Citation in format AMSBIB
\Bibitem{MamPro17}
\by A.~E.~Mamontov, D.~A.~Prokudin
\paper Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 1
\pages 148--164
\mathnet{http://mi.mathnet.ru/smj2848}
\crossref{https://doi.org/10.17377/smzh.2017.58.115}
\elib{https://elibrary.ru/item.asp?id=29159911}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 1
\pages 113--127
\crossref{https://doi.org/10.1134/S0037446617010153}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396065100015}
\elib{https://elibrary.ru/item.asp?id=29482067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014652823}
Linking options:
  • https://www.mathnet.ru/eng/smj2848
  • https://www.mathnet.ru/eng/smj/v58/i1/p148
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :75
    References:38
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024