Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 1, Pages 143–147
DOI: https://doi.org/10.17377/smzh.2017.58.114
(Mi smj2847)
 

This article is cited in 6 scientific papers (total in 6 papers)

$k$-invariant nets over an algebraic extension of a field $k$

V. A. Koibaevab, Ya. N. Nuzhinc

a North Ossetian State University named after K. L. Hetagurov, Vladikavkaz, Russia
b Southern Mathematical Institute, Vladikavkaz, Russia
c Siberian Federal University, Krasnoyarsk, Russia
Full-text PDF (253 kB) Citations (6)
References:
Abstract: Let $K$ be an algebraic extension of a field $k$, let $\sigma=(\sigma_{ij})$ be an irreducible full (elementary) net of order $n\geq2$ (respectively, $n\geq3$) over $K$, while the additive subgroups $\sigma_{ij}$ are $k$-subspaces of $K$. We prove that all $\sigma_{ij}$ coincide with an intermediate subfield $P$, $k\subseteq P\subseteq K$, up to conjugation by a diagonal matrix.
Keywords: general and special linear groups, full and elementary nets of additive subgroups, net subgroup, algebraic extension of a field.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 115033020013
Russian Foundation for Basic Research 16-01-00707
The first author was supported by the Ministry of Education and Science of the Russian Federation under Open Research and Development Program 115033020013. The second author was supported by the Russian Foundation for Basic Research (Grant 16-01-00707).
Received: 16.01.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 1, Pages 109–112
DOI: https://doi.org/10.1134/S0037446617010141
Bibliographic databases:
Document Type: Article
UDC: 512.5
MSC: 35R30
Language: Russian
Citation: V. A. Koibaev, Ya. N. Nuzhin, “$k$-invariant nets over an algebraic extension of a field $k$”, Sibirsk. Mat. Zh., 58:1 (2017), 143–147; Siberian Math. J., 58:1 (2017), 109–112
Citation in format AMSBIB
\Bibitem{KoiNuz17}
\by V.~A.~Koibaev, Ya.~N.~Nuzhin
\paper $k$-invariant nets over an algebraic extension of a~field~$k$
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 1
\pages 143--147
\mathnet{http://mi.mathnet.ru/smj2847}
\crossref{https://doi.org/10.17377/smzh.2017.58.114}
\elib{https://elibrary.ru/item.asp?id=29159910}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 1
\pages 109--112
\crossref{https://doi.org/10.1134/S0037446617010141}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396065100014}
\elib{https://elibrary.ru/item.asp?id=29480304}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014615902}
Linking options:
  • https://www.mathnet.ru/eng/smj2847
  • https://www.mathnet.ru/eng/smj/v58/i1/p143
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:352
    Full-text PDF :69
    References:52
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024