|
This article is cited in 6 scientific papers (total in 6 papers)
$k$-invariant nets over an algebraic extension of a field $k$
V. A. Koibaevab, Ya. N. Nuzhinc a North Ossetian State University named after K. L. Hetagurov, Vladikavkaz, Russia
b Southern Mathematical Institute, Vladikavkaz, Russia
c Siberian Federal University, Krasnoyarsk, Russia
Abstract:
Let $K$ be an algebraic extension of a field $k$, let $\sigma=(\sigma_{ij})$ be an irreducible full (elementary) net of order $n\geq2$ (respectively, $n\geq3$) over $K$, while the additive subgroups $\sigma_{ij}$ are $k$-subspaces of $K$. We prove that all $\sigma_{ij}$ coincide with an intermediate subfield $P$, $k\subseteq P\subseteq K$, up to conjugation by a diagonal matrix.
Keywords:
general and special linear groups, full and elementary nets of additive subgroups, net subgroup, algebraic extension of a field.
Received: 16.01.2016
Citation:
V. A. Koibaev, Ya. N. Nuzhin, “$k$-invariant nets over an algebraic extension of a field $k$”, Sibirsk. Mat. Zh., 58:1 (2017), 143–147; Siberian Math. J., 58:1 (2017), 109–112
Linking options:
https://www.mathnet.ru/eng/smj2847 https://www.mathnet.ru/eng/smj/v58/i1/p143
|
|