Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 1, Pages 104–106
DOI: https://doi.org/10.17377/smzh.2017.58.111
(Mi smj2844)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Riemann–Roch theorem for the Dynnikov–Novikov discrete complex analysis

D. V. Egorov

Institute of Mathematics and Information Science, Ammosov North-Eastern Federal University, Yakutsk, Russia
Full-text PDF (216 kB) Citations (1)
References:
Abstract: We prove an analog of the Riemann–Roch theorem for the Dynnikov–Novikov discrete complex analysis.
Keywords: discrete holomorphic function, discrete Riemann–Roch theorem.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-4382.2014.1
Dynasty Foundation
The author was partially supported by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-4382.2014.1) and a fellowship for young scientists of the Dynasty Foundation.
Received: 03.05.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 1, Pages 78–79
DOI: https://doi.org/10.1134/S0037446617010116
Bibliographic databases:
Document Type: Article
UDC: 517.962.22+517.547.9
MSC: 35R30
Language: Russian
Citation: D. V. Egorov, “The Riemann–Roch theorem for the Dynnikov–Novikov discrete complex analysis”, Sibirsk. Mat. Zh., 58:1 (2017), 104–106; Siberian Math. J., 58:1 (2017), 78–79
Citation in format AMSBIB
\Bibitem{Ego17}
\by D.~V.~Egorov
\paper The Riemann--Roch theorem for the Dynnikov--Novikov discrete complex analysis
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 1
\pages 104--106
\mathnet{http://mi.mathnet.ru/smj2844}
\crossref{https://doi.org/10.17377/smzh.2017.58.111}
\elib{https://elibrary.ru/item.asp?id=29159907}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 1
\pages 78--79
\crossref{https://doi.org/10.1134/S0037446617010116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396065100011}
\elib{https://elibrary.ru/item.asp?id=29496483}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014632549}
Linking options:
  • https://www.mathnet.ru/eng/smj2844
  • https://www.mathnet.ru/eng/smj/v58/i1/p104
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025