Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 1, Pages 88–94
DOI: https://doi.org/10.17377/smzh.2017.58.109
(Mi smj2842)
 

On groups whose element orders divide $6$ and $7$

W. Guoa, A. S. Mamontovbc

a University of Science and Technology of China, School of Mathematical Science, Hefei, P. R. China
b Sobolev Institute of Mathematics, Novosibirsk, Russia
c Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: We prove that a group whose element orders divide $6$ and $7$ either is locally finite or an extension of a nontrivial elementary abelian $2$-group by a group without involutions.
Keywords: periodic group, locally finite group, spectrum.
Funding agency Grant number
National Natural Science Foundation of China 11371335
Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences
The first author was supported by the NNSF of China (11371335) and the Wu Wen-Tsuu Key Laboratory of Mathematics of the Chinese Academy of Science.
Received: 04.12.2015
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 1, Pages 67–71
DOI: https://doi.org/10.1134/S0037446617010098
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 35R30
Language: Russian
Citation: W. Guo, A. S. Mamontov, “On groups whose element orders divide $6$ and $7$”, Sibirsk. Mat. Zh., 58:1 (2017), 88–94; Siberian Math. J., 58:1 (2017), 67–71
Citation in format AMSBIB
\Bibitem{GuoMam17}
\by W.~Guo, A.~S.~Mamontov
\paper On groups whose element orders divide~$6$ and~$7$
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 1
\pages 88--94
\mathnet{http://mi.mathnet.ru/smj2842}
\crossref{https://doi.org/10.17377/smzh.2017.58.109}
\elib{https://elibrary.ru/item.asp?id=29159905}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 1
\pages 67--71
\crossref{https://doi.org/10.1134/S0037446617010098}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396065100009}
\elib{https://elibrary.ru/item.asp?id=29488858}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014713068}
Linking options:
  • https://www.mathnet.ru/eng/smj2842
  • https://www.mathnet.ru/eng/smj/v58/i1/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :73
    References:57
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024