|
This article is cited in 8 scientific papers (total in 8 papers)
Sub-Riemannian distance on the Lie group $\operatorname{SL}(2)$
V. N. Berestovskiĭa, I. A. Zubarevab a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Omsk Branch, Omsk, Russia
Abstract:
We find the distances between arbitrary elements of the Lie group $\operatorname{SL}(2)$ for the left invariant sub-Riemannian metric also invariant with respect to the right shifts by elements of the Lie subgroup $\operatorname{SO}(2)\subset\operatorname{SL}(2)$, in other words, the invariant sub-Riemannian metric on the weakly symmetric space $(\operatorname{SL}(2)\times\operatorname{SO}(2))/\operatorname{SO}(2)$ of Selberg.
Keywords:
distance, geodesic, geodesic orbit space, Lie algebra, Lie group, invariant sub-Riemannian metric, shortest arc.
Received: 25.06.2015
Citation:
V. N. Berestovskiǐ, I. A. Zubareva, “Sub-Riemannian distance on the Lie group $\operatorname{SL}(2)$”, Sibirsk. Mat. Zh., 58:1 (2017), 22–35; Siberian Math. J., 58:1 (2017), 16–27
Linking options:
https://www.mathnet.ru/eng/smj2836 https://www.mathnet.ru/eng/smj/v58/i1/p22
|
Statistics & downloads: |
Abstract page: | 236 | Full-text PDF : | 60 | References: | 44 | First page: | 5 |
|