Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 1, Pages 3–15
DOI: https://doi.org/10.17377/smzh.2017.58.101
(Mi smj2834)
 

This article is cited in 1 scientific paper (total in 1 paper)

Centralizers of generalized skew derivations on multilinear polynomials

E. Albaşa, N. Argaça, V. De Filippisb

a Department of Mathematics, Science Faculty, Ege University, Bornova, Izmir, Turkey
b M.I.F.T., University of Messina, Italy
Full-text PDF (341 kB) Citations (1)
References:
Abstract: Let $\mathscr R$ be a prime ring of characteristic different from $2$, let $\mathscr Q$ be the right Martindale quotient ring of $\mathscr R$, and let $\mathscr C$ be the extended centroid of $\mathscr R$. Suppose that $\mathscr G$ is a nonzero generalized skew derivation of $\mathscr R$ and $f(x_1,\dots,x_n)$ is a noncentral multilinear polynomial over $\mathscr C$ with $n$ noncommuting variables. Let $f(\mathscr R)=\{f(r_1,\dots,r_n)\colon r_i\in\mathscr R\}$ be the set of all evaluations of $f(x_1,\dots,x_n)$ in $\mathscr R$, while $\mathscr A=\{[\mathscr G(f(r_1,\dots,r_n)),f(r_1,\dots,r_n)]\colon r_i\in\mathscr R\}$, and let $C_\mathscr R(\mathscr A)$ be the centralizer of $\mathscr A$ in $\mathscr R$; i.e., $C_\mathscr R(\mathscr A)=\{a\in\mathscr R\colon[a,x]=0\ \forall x\in\mathscr A\}$. We prove that if $\mathscr A\neq(0)$, then $C_\mathscr R(\mathscr A)=Z(R)$.
Keywords: polynomial identity, generalized skew derivation, prime ring.
Received: 11.05.2015
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 1, Pages 1–10
DOI: https://doi.org/10.1134/S0037446617010013
Bibliographic databases:
Document Type: Article
UDC: 512.552
MSC: 16W25, 16N60
Language: Russian
Citation: E. Albaş, N. Argaç, V. De Filippis, “Centralizers of generalized skew derivations on multilinear polynomials”, Sibirsk. Mat. Zh., 58:1 (2017), 3–15; Siberian Math. J., 58:1 (2017), 1–10
Citation in format AMSBIB
\Bibitem{AlbArgDe 17}
\by E.~Alba{\c s}, N.~Arga{\c c}, V.~De Filippis
\paper Centralizers of generalized skew derivations on multilinear polynomials
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 1
\pages 3--15
\mathnet{http://mi.mathnet.ru/smj2834}
\crossref{https://doi.org/10.17377/smzh.2017.58.101}
\elib{https://elibrary.ru/item.asp?id=29159897}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 1
\pages 1--10
\crossref{https://doi.org/10.1134/S0037446617010013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396065100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014583553}
Linking options:
  • https://www.mathnet.ru/eng/smj2834
  • https://www.mathnet.ru/eng/smj/v58/i1/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :51
    References:49
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024