|
This article is cited in 1 scientific paper (total in 1 paper)
Centralizers of generalized skew derivations on multilinear polynomials
E. Albaşa, N. Argaça, V. De Filippisb a Department of Mathematics, Science Faculty, Ege University, Bornova, Izmir, Turkey
b M.I.F.T., University of Messina, Italy
Abstract:
Let $\mathscr R$ be a prime ring of characteristic different from $2$, let $\mathscr Q$ be the right Martindale quotient ring of $\mathscr R$, and let $\mathscr C$ be the extended centroid of $\mathscr R$. Suppose that $\mathscr G$ is a nonzero generalized skew derivation of $\mathscr R$ and $f(x_1,\dots,x_n)$ is a noncentral multilinear polynomial over $\mathscr C$ with $n$ noncommuting variables. Let $f(\mathscr R)=\{f(r_1,\dots,r_n)\colon r_i\in\mathscr R\}$ be the set of all evaluations of $f(x_1,\dots,x_n)$ in $\mathscr R$, while $\mathscr A=\{[\mathscr G(f(r_1,\dots,r_n)),f(r_1,\dots,r_n)]\colon r_i\in\mathscr R\}$, and let $C_\mathscr R(\mathscr A)$ be the centralizer of $\mathscr A$ in $\mathscr R$; i.e., $C_\mathscr R(\mathscr A)=\{a\in\mathscr R\colon[a,x]=0\ \forall x\in\mathscr A\}$. We prove that if $\mathscr A\neq(0)$, then $C_\mathscr R(\mathscr A)=Z(R)$.
Keywords:
polynomial identity, generalized skew derivation, prime ring.
Received: 11.05.2015
Citation:
E. Albaş, N. Argaç, V. De Filippis, “Centralizers of generalized skew derivations on multilinear polynomials”, Sibirsk. Mat. Zh., 58:1 (2017), 3–15; Siberian Math. J., 58:1 (2017), 1–10
Linking options:
https://www.mathnet.ru/eng/smj2834 https://www.mathnet.ru/eng/smj/v58/i1/p3
|
Statistics & downloads: |
Abstract page: | 194 | Full-text PDF : | 51 | References: | 49 | First page: | 6 |
|