Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 6, Pages 1346–1360
DOI: https://doi.org/10.17377/smzh.2016.57.612
(Mi smj2828)
 

This article is cited in 1 scientific paper (total in 1 paper)

The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces

A. D. Mednykhabc, I. A. Mednykhabc

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Siberian Federal University, Krasnoyarsk, Russia
Full-text PDF (363 kB) Citations (1)
References:
Abstract: Denote the set of all holomorphic mappings of a genus 3 Riemann surface $S_3$ onto a genus 2 Riemann surface $S_2$ by $\operatorname{Hol}(S_3,S_2)$. Call two mappings $f$ and $g$ in $\operatorname{Hol}(S_3,S_2)$ equivalent whenever there exist conformal automorphisms $\alpha$ and $\beta$ of $S_3$ and $S_2$ respectively with $f\circ\alpha=\beta\circ g$. It is known that $\operatorname{Hol}(S_3,S_2)$ always consists of at most two equivalence classes.
We obtain the following results: If $\operatorname{Hol}(S_3,S_2)$ consists of two equivalence classes then both $S_3$ and $S_2$ can be defined by real algebraic equations; furthermore, for every pair of inequivalent mappings $f$ and $g$ in $\operatorname{Hol}(S_3,S_2)$ there exist anticonformal automorphisms $\alpha^-$ and $\beta^-$ with $f\circ\alpha^-=\beta^-\circ g$. Up to conformal equivalence, there exist exactly three pairs of Riemann surfaces $(S_3,S_2)$ such that $\operatorname{Hol}(S_3,S_2)$ consists of two equivalence classes.
Keywords: Riemann surface, holomorphic mapping, anticonformal involution, real curve, conformal automorphism.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-07906
16-31-00138
Ministry of Education and Science of the Russian Federation 14.Y26.31.0006
The authors were supported by the Russian Foundation for Basic Research (Grants 15-01-07906; 16-31-00138) and the Government of the Russian Federation for the State Maintenance Program for the Leading Scientific Schools at Siberian Federal University (Grant 14.Y26.31.0006).
Received: 09.12.2015
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 6, Pages 1055–1065
DOI: https://doi.org/10.1134/S0037446616060124
Bibliographic databases:
Document Type: Article
UDC: 517.545
Language: Russian
Citation: A. D. Mednykh, I. A. Mednykh, “The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces”, Sibirsk. Mat. Zh., 57:6 (2016), 1346–1360; Siberian Math. J., 57:6 (2016), 1055–1065
Citation in format AMSBIB
\Bibitem{MedMed16}
\by A.~D.~Mednykh, I.~A.~Mednykh
\paper The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 6
\pages 1346--1360
\mathnet{http://mi.mathnet.ru/smj2828}
\crossref{https://doi.org/10.17377/smzh.2016.57.612}
\elib{https://elibrary.ru/item.asp?id=27380123}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 6
\pages 1055--1065
\crossref{https://doi.org/10.1134/S0037446616060124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391768100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007143945}
Linking options:
  • https://www.mathnet.ru/eng/smj2828
  • https://www.mathnet.ru/eng/smj/v57/i6/p1346
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:4928
    Full-text PDF :95
    References:48
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024