|
This article is cited in 4 scientific papers (total in 4 papers)
$\mathfrak F$-projectors and $\mathfrak F$-covering subgroups of finite groups
V. A. Vedernikova, M. M. Sorokinab a Moscow City Teachers' Training University, Moscow, Russia
b Bryansk State University, Bryansk, Russia
Abstract:
Given a nonempty set $\omega$ of primes and a nonempty class $\mathfrak F$ of groups, we define the $\mathfrak F^\omega$-projector and $\mathfrak F^\omega$-covering subgroup of a finite group and study their properties (existence, invariance under certain homomorphisms, conjugacy, and embedding). We extend the results of Gaschütz, Schunck, Erickson, and others.
Keywords:
finite group, $\omega$-local formation, $\mathfrak F^\omega$-projector, $\mathfrak F^\omega$-covering subgroup.
Received: 17.12.2015
Citation:
V. A. Vedernikov, M. M. Sorokina, “$\mathfrak F$-projectors and $\mathfrak F$-covering subgroups of finite groups”, Sibirsk. Mat. Zh., 57:6 (2016), 1224–1239; Siberian Math. J., 57:6 (2016), 957–968
Linking options:
https://www.mathnet.ru/eng/smj2819 https://www.mathnet.ru/eng/smj/v57/i6/p1224
|
Statistics & downloads: |
Abstract page: | 308 | Full-text PDF : | 83 | References: | 51 | First page: | 6 |
|