Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 6, Pages 1208–1223
DOI: https://doi.org/10.17377/smzh.2016.57.602
(Mi smj2818)
 

Open waveguides in doubly periodic junctions of domains with different limit dimensions

F. L. Bakhareva, S. A. Nazarovbcd

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
c Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
d Institute of Problems of Mechanical Engineering, St. Petersburg, Russia
References:
Abstract: Considering the spectral Neumann problem for the Laplace operator on a doubly periodic square grid of thin circular cylinders (of diameter $\varepsilon\ll1$) with nodes, which are sets of unit size, we show that by changing or removing one or several semi-infinite chains of nodes we can form additional spectral segments, the wave passage bands, in the essential spectrum of the original grid. The corresponding waveguide processes are localized in a neighborhood of the said chains, forming $\mathrm I$-shaped, $\mathrm V$-shaped, and $\mathrm L$-shaped open waveguides. To derive the result, we use the asymptotic analysis of the eigenvalues of model problems on various periodicity cells.
Keywords: spectral Neumann problem, doubly periodic grid, localized waves, open waveguides.
Funding agency Grant number
Saint Petersburg State University 0.38.237.2014
Ministry of Education and Science of the Russian Federation 11.G34.31.0026
Gazprom Neft
The authors were supported by St. Petersburg State University (Project 0.38.237.2014). The first author was also supported by the Chebyshev Laboratory of St. Petersburg State University, the Government of the Russian Federation (Agreement No. 11.G34.31.0026), and Gazprom Neft PJSC.
Received: 12.11.2015
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 6, Pages 943–956
DOI: https://doi.org/10.1134/S0037446616060021
Bibliographic databases:
Document Type: Article
UDC: 517.956.8+517.956.328+517.958:535.4
Language: Russian
Citation: F. L. Bakharev, S. A. Nazarov, “Open waveguides in doubly periodic junctions of domains with different limit dimensions”, Sibirsk. Mat. Zh., 57:6 (2016), 1208–1223; Siberian Math. J., 57:6 (2016), 943–956
Citation in format AMSBIB
\Bibitem{BakNaz16}
\by F.~L.~Bakharev, S.~A.~Nazarov
\paper Open waveguides in doubly periodic junctions of domains with different limit dimensions
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 6
\pages 1208--1223
\mathnet{http://mi.mathnet.ru/smj2818}
\crossref{https://doi.org/10.17377/smzh.2016.57.602}
\elib{https://elibrary.ru/item.asp?id=27380113}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 6
\pages 943--956
\crossref{https://doi.org/10.1134/S0037446616060021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391768100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007110004}
Linking options:
  • https://www.mathnet.ru/eng/smj2818
  • https://www.mathnet.ru/eng/smj/v57/i6/p1208
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:4938
    Full-text PDF :88
    References:68
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024