Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 4, Pages 866–888
DOI: https://doi.org/10.17377/smzh.2016.57.410
(Mi smj2789)
 

This article is cited in 5 scientific papers (total in 5 papers)

The commutator width of some relatively free Lie algebras and nilpotent groups

V. A. Roman'kov

Omsk State University, Omsk, Russia
Full-text PDF (404 kB) Citations (5)
References:
Abstract: We determine the exact values of the commutator width of absolutely free and free solvable Lie rings of finite rank, as well as free and free solvable Lie algebras of finite rank over an arbitrary field. We calculate the values of the commutator width of free nilpotent and free metabelian nilpotent Lie algebras of rank 2 or of nilpotency class 2 over an arbitrary field. We also find the values of the commutator width for free nilpotent and free metabelian nilpotent Lie algebras of finite rank at least 3 over an arbitrary field in the case that the nilpotency class exceeds the rank at least by 2. In the case of free nilpotent and free metabelian nilpotent Lie rings of arbitrary finite rank, as well as free nilpotent and free metabelian nilpotent Lie algebras of arbitrary finite rank over the field of rationals, we calculate the values of commutator width without any restrictions. It follows in particular that the free or nonabelian free solvable Lie rings of distinct finite ranks, as well as the free or nonabelian free solvable Lie algebras of distinct finite ranks over an arbitrary field are not elementarily equivalent to each other. We also calculate the exact values of the commutator width of free $\mathbb Q$-power nilpotent, free nilpotent, free metabelian, and free metabelian nilpotent groups of finite rank.
Keywords: free (solvable, metabelian, nilpotent, metabelian nilpotent) Lie algebra, free (solvable, metabelian, nilpotent, metabelian nilpotent) Lie ring, free ($\mathbb Q$-power nilpotent, metabelian, nilpotent, metabelian nilpotent) group, commutator width, elementary equivalence.
Funding agency Grant number
Russian Foundation for Basic Research 16.01.00577-а
The author was supported by the Russian Foundation for Basic Research (Grant 16.01.00577-a).
Received: 22.08.2015
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 4, Pages 679–695
DOI: https://doi.org/10.1134/S0037446616040108
Bibliographic databases:
Document Type: Article
UDC: 512.54+512.55+512.57
Language: Russian
Citation: V. A. Roman'kov, “The commutator width of some relatively free Lie algebras and nilpotent groups”, Sibirsk. Mat. Zh., 57:4 (2016), 866–888; Siberian Math. J., 57:4 (2016), 679–695
Citation in format AMSBIB
\Bibitem{Rom16}
\by V.~A.~Roman'kov
\paper The commutator width of some relatively free Lie algebras and nilpotent groups
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 4
\pages 866--888
\mathnet{http://mi.mathnet.ru/smj2789}
\crossref{https://doi.org/10.17377/smzh.2016.57.410}
\elib{https://elibrary.ru/item.asp?id=27380081}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 4
\pages 679--695
\crossref{https://doi.org/10.1134/S0037446616040108}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382146900010}
\elib{https://elibrary.ru/item.asp?id=26627028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983657122}
Linking options:
  • https://www.mathnet.ru/eng/smj2789
  • https://www.mathnet.ru/eng/smj/v57/i4/p866
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :107
    References:48
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024