|
This article is cited in 12 scientific papers (total in 12 papers)
On subordination of some analytic functions
R. Kargara, A. Ebadianb, J. Sokółc a Young Researchers and Elite Club, Urmia Branch, Islamic Azad University, Urmia, Iran
b Department of Mathematics, Payame Noor University, P.O. Box 19395–3697 Tehran, Iran
c Department of Mathematics, Rzeszów University of Technology, Rzeszów, Poland
Abstract:
We define $\mathscr V(\alpha,\beta)$ ($alpha<1$ and $\beta>1$), the new subclass of analytic functions with bounded positive real part, $$
\mathscr V(\alpha,\beta)^=\Bigl\{f\in\mathscr A\colon\alpha<\operatorname{Re}\Bigl\{\Bigl(\frac z{f(z)}\Bigr)^2f'(z)\Bigr\}<\beta\Bigr\},
$$
and study some properties of $\mathscr V(\alpha,\beta)$. We also study the class $\mathscr U(\gamma)$ ($\gamma>0$):
$$
\mathscr U(\gamma):=\Bigl\{f\in\mathscr A\colon\Bigl|\Bigl(\frac z{f(z)}\Bigr)^2f'(z)-1\Bigr|<\gamma\Bigr\},
$$
where $\mathscr A$ is the class of normalized functions.
Keywords:
analytic function, subordination, bounded positive real part, Fekete–Szegö problem.
Received: 02.02.2015
Citation:
R. Kargar, A. Ebadian, J. Sokół, “On subordination of some analytic functions”, Sibirsk. Mat. Zh., 57:4 (2016), 768–775; Siberian Math. J., 57:4 (2016), 599–605
Linking options:
https://www.mathnet.ru/eng/smj2783 https://www.mathnet.ru/eng/smj/v57/i4/p768
|
|