Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 3, Pages 562–595
DOI: https://doi.org/10.17377/smzh.2016.57.306
(Mi smj2764)
 

This article is cited in 12 scientific papers (total in 12 papers)

Large deviation principles in boundary problems for compound renewal processes

A. A. Borovkovab

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: We find explicit logarithmic asymptotics for the probability of events related to the intersection (or nonintersection) of arbitrary remote boundaries by the trajectory of a compound renewal process.
Keywords: compound renewal process, large deviation principle, boundary problem, second deviation function, admissible nonhomogeneity, regular deviation, shortest trajectory, first boundary problem, level curves, second boundary problem.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00220
The author was supported by the Russian Foundation for Basic Research (Grant 14-01-00220).
Received: 22.01.2015
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 3, Pages 442–469
DOI: https://doi.org/10.1134/S003744661603006X
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. A. Borovkov, “Large deviation principles in boundary problems for compound renewal processes”, Sibirsk. Mat. Zh., 57:3 (2016), 562–595; Siberian Math. J., 57:3 (2016), 442–469
Citation in format AMSBIB
\Bibitem{Bor16}
\by A.~A.~Borovkov
\paper Large deviation principles in boundary problems for compound renewal processes
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 3
\pages 562--595
\mathnet{http://mi.mathnet.ru/smj2764}
\crossref{https://doi.org/10.17377/smzh.2016.57.306}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3548784}
\elib{https://elibrary.ru/item.asp?id=27380056}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 3
\pages 442--469
\crossref{https://doi.org/10.1134/S003744661603006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000379192600006}
\elib{https://elibrary.ru/item.asp?id=26839423}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977103426}
Linking options:
  • https://www.mathnet.ru/eng/smj2764
  • https://www.mathnet.ru/eng/smj/v57/i3/p562
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :76
    References:53
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024