Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 2, Pages 469–478
DOI: https://doi.org/10.17377/smzh.2016.57.219
(Mi smj2758)
 

This article is cited in 12 scientific papers (total in 12 papers)

Best approximation methods and widths for some classes of functions in $H_{q,\rho}$, $1\le q\le\infty$, $0<\rho\le1$

M. Sh. Shabozova, G. A. Yusupovb

a Juraev Institute of Mathematics, Tajik Academy of Sciences, Dushanbe, Tajikistan
b Tajik National University, Dushanbe, Tajikistan
References:
Abstract: We compute the exact values of widths for various widths for the classes $W_{q,a}^{(r)}(\Phi,\mu)$, $\mu\ge1$, of analytic functions in the disk belonging to the Hardy space $H_q$, $q\ge1$, whose averaged moduli of continuity of the boundary values of the derivatives with respect to the argument $f_a^{(r)}$, $r\in\mathbb N$, are dominated by a given function $\Phi$. For calculating the linear and Gelfand $n$-widths, we use best linear approximation for these functions.
Keywords: best linear approximation method, modulus of continuity, Hardy space, majorant, $n$-width.
Received: 31.03.2015
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 2, Pages 369–376
DOI: https://doi.org/10.1134/S0037446616020191
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, G. A. Yusupov, “Best approximation methods and widths for some classes of functions in $H_{q,\rho}$, $1\le q\le\infty$, $0<\rho\le1$”, Sibirsk. Mat. Zh., 57:2 (2016), 469–478; Siberian Math. J., 57:2 (2016), 369–376
Citation in format AMSBIB
\Bibitem{ShaYus16}
\by M.~Sh.~Shabozov, G.~A.~Yusupov
\paper Best approximation methods and widths for some classes of functions in $H_{q,\rho}$, $1\le q\le\infty$, $0<\rho\le1$
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 2
\pages 469--478
\mathnet{http://mi.mathnet.ru/smj2758}
\crossref{https://doi.org/10.17377/smzh.2016.57.219}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3510207}
\elib{https://elibrary.ru/item.asp?id=26237282}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 2
\pages 369--376
\crossref{https://doi.org/10.1134/S0037446616020191}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376307900019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969746019}
Linking options:
  • https://www.mathnet.ru/eng/smj2758
  • https://www.mathnet.ru/eng/smj/v57/i2/p469
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025