Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 2, Pages 432–446
DOI: https://doi.org/10.17377/smzh.2016.57.216
(Mi smj2755)
 

This article is cited in 1 scientific paper (total in 1 paper)

Dirac flow on the $3$-sphere

E. G. Malkovich

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (503 kB) Citations (1)
References:
Abstract: We illustrate some well-known facts about the evolution of the $3$-sphere $(S^3,g)$ generated by the Ricci flow. We define the Dirac flow and study the properties of the metric $\overline g=dt^2+g(t)$, where $g(t)$ is a solution of the Dirac flow. In the case of a metric $g$ conformally equivalent to the round metric on $S^3$ the metric $\overline g$ is of constant curvature. We study the properties of solutions in the case when $g$ depends on two functional parameters. The flow on differential $1$-forms whose solution generates the Eguchi–Hanson metric was written down. In particular cases we study the singularities developed by these flows.
Keywords: Dirac flow, Ricci flow, spaces of constant curvature, Eguchi–Hanson metric, Hitchin flow.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.B25.31.0029
The author was supported by the Government of the Russian Federation (Grant 14.B25.31.0029).
Received: 09.04.2015
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 2, Pages 340–351
DOI: https://doi.org/10.1134/S0037446616020166
Bibliographic databases:
Document Type: Article
UDC: 514.7
Language: Russian
Citation: E. G. Malkovich, “Dirac flow on the $3$-sphere”, Sibirsk. Mat. Zh., 57:2 (2016), 432–446; Siberian Math. J., 57:2 (2016), 340–351
Citation in format AMSBIB
\Bibitem{Mal16}
\by E.~G.~Malkovich
\paper Dirac flow on the $3$-sphere
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 2
\pages 432--446
\mathnet{http://mi.mathnet.ru/smj2755}
\crossref{https://doi.org/10.17377/smzh.2016.57.216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3510204}
\elib{https://elibrary.ru/item.asp?id=26237279}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 2
\pages 340--351
\crossref{https://doi.org/10.1134/S0037446616020166}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376307900016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969627163}
Linking options:
  • https://www.mathnet.ru/eng/smj2755
  • https://www.mathnet.ru/eng/smj/v57/i2/p432
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024