Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 2, Pages 312–331
DOI: https://doi.org/10.17377/smzh.2016.57.207
(Mi smj2746)
 

The real analog of the Jacobi inversion problem on a Riemann surface with boundary, its generalizations, and applications

E. I. Zverovicha, O. B. Dolgopolovaa, E. A. Krushevskiĭb

a Belarusian State University, Minsk, Belarus
b Belarusian National Technical University, Minsk, Belarus
References:
Abstract: Given a finite Riemann surface of genus $h\ge1$ with boundary composed of $m+1$ connected components we consider a system of $m+h$ real congruences analogous to the classical Jacobi inversion problem. We provide a solution to this system and its applications to boundary value problems.
Keywords: Riemann surface, Jacobi inversion problem, Abelian differential, Riemann conjugation problem, Hilbert problem, Riemann theta-function, double, Cauchy-type kernel.
Received: 23.12.2014
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 2, Pages 242–259
DOI: https://doi.org/10.1134/S0037446616020075
Bibliographic databases:
Document Type: Article
UDC: 517.948.32+517.544
Language: Russian
Citation: E. I. Zverovich, O. B. Dolgopolova, E. A. Krushevskiǐ, “The real analog of the Jacobi inversion problem on a Riemann surface with boundary, its generalizations, and applications”, Sibirsk. Mat. Zh., 57:2 (2016), 312–331; Siberian Math. J., 57:2 (2016), 242–259
Citation in format AMSBIB
\Bibitem{ZveDolKru16}
\by E.~I.~Zverovich, O.~B.~Dolgopolova, E.~A.~Krushevski{\v\i}
\paper The real analog of the Jacobi inversion problem on a~Riemann surface with boundary, its generalizations, and applications
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 2
\pages 312--331
\mathnet{http://mi.mathnet.ru/smj2746}
\crossref{https://doi.org/10.17377/smzh.2016.57.207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3510195}
\elib{https://elibrary.ru/item.asp?id=26237270}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 2
\pages 242--259
\crossref{https://doi.org/10.1134/S0037446616020075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376307900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969667415}
Linking options:
  • https://www.mathnet.ru/eng/smj2746
  • https://www.mathnet.ru/eng/smj/v57/i2/p312
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :87
    References:67
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024