Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 1, Pages 199–221
DOI: https://doi.org/10.17377/smzh.2016.57.115
(Mi smj2738)
 

This article is cited in 5 scientific papers (total in 5 papers)

Killing tensor fields on the $2$-torus

V. A. Sharafutdinovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (503 kB) Citations (5)
References:
Abstract: A symmetric tensor field on a Riemannian manifold is called a Killing field if the symmetric part of its covariant derivative equals zero. There is a one-to-one correspondence between Killing tensor fields and first integrals of the geodesic flow which depend polynomially on the velocity. Therefore Killing tensor fields relate closely to the problem of integrability of geodesic flows. In particular, the following question is still open: does there exist a Riemannian metric on the $2$-torus which admits an irreducible Killing tensor field of rank $\ge3$? We obtain two necessary conditions on a Riemannian metric on the $2$-torus for the existence of Killing tensor fields. The first condition is valid for Killing tensor fields of arbitrary rank and relates to closed geodesics. The second condition is obtained for rank 3 Killing tensor fields and pertains to isolines of the Gaussian curvature.
Keywords: Killing fields, integrability of geodesic flows, tensor analysis, the method of spherical harmonics.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-05929-a
The author was partially supported by the Russian Foundation for Basic Research (Grant 15-01-05929-a).
Received: 17.11.2014
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 1, Pages 155–173
DOI: https://doi.org/10.1134/S0037446616010158
Bibliographic databases:
Document Type: Article
UDC: 514.764.2+517.954
Language: Russian
Citation: V. A. Sharafutdinov, “Killing tensor fields on the $2$-torus”, Sibirsk. Mat. Zh., 57:1 (2016), 199–221; Siberian Math. J., 57:1 (2016), 155–173
Citation in format AMSBIB
\Bibitem{Sha16}
\by V.~A.~Sharafutdinov
\paper Killing tensor fields on the $2$-torus
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 1
\pages 199--221
\mathnet{http://mi.mathnet.ru/smj2738}
\crossref{https://doi.org/10.17377/smzh.2016.57.115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3499861}
\elib{https://elibrary.ru/item.asp?id=26236939}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 1
\pages 155--173
\crossref{https://doi.org/10.1134/S0037446616010158}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373234400015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008445051}
Linking options:
  • https://www.mathnet.ru/eng/smj2738
  • https://www.mathnet.ru/eng/smj/v57/i1/p199
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024