Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 1, Pages 157–170
DOI: https://doi.org/10.17377/smzh.2016.57.112
(Mi smj2735)
 

This article is cited in 2 scientific papers (total in 2 papers)

Prym differentials as solutions to boundary value problems on Riemann surfaces

E. V. Semenko

Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (467 kB) Citations (2)
References:
Abstract: Construction of multiplicative functions and Prym differentials, including the case of characters with branch points, reduces to solving a homogeneous boundary value problem on the Riemann surface. The use of the well-established theory of boundary value problems creates additional possibilities for studying Prym differentials and related bundles. Basing on the theory of boundary value problems, we fully describe the class of divisors of Prym differentials and obtain new integral expressions for Prym differentials, which enable us to study them directly and, in particular, to study their dependence on the point of the Teichmüller space and characters. Relying on this, we obtain and generalize certain available results on Prym differentials by a new method.
Keywords: Riemann surface, multiplicative function, Prym differential, homogeneous boundary value problem.
Received: 27.11.2014
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 1, Pages 124–134
DOI: https://doi.org/10.1134/S0037446616010122
Bibliographic databases:
Document Type: Article
UDC: 517.53/55
Language: Russian
Citation: E. V. Semenko, “Prym differentials as solutions to boundary value problems on Riemann surfaces”, Sibirsk. Mat. Zh., 57:1 (2016), 157–170; Siberian Math. J., 57:1 (2016), 124–134
Citation in format AMSBIB
\Bibitem{Sem16}
\by E.~V.~Semenko
\paper Prym differentials as solutions to boundary value problems on Riemann surfaces
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 1
\pages 157--170
\mathnet{http://mi.mathnet.ru/smj2735}
\crossref{https://doi.org/10.17377/smzh.2016.57.112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3499858}
\elib{https://elibrary.ru/item.asp?id=26236936}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 1
\pages 124--134
\crossref{https://doi.org/10.1134/S0037446616010122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373234400012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008430124}
Linking options:
  • https://www.mathnet.ru/eng/smj2735
  • https://www.mathnet.ru/eng/smj/v57/i1/p157
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :70
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024