Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 1, Pages 98–112
DOI: https://doi.org/10.17377/smzh.2016.57.108
(Mi smj2731)
 

This article is cited in 10 scientific papers (total in 10 papers)

Constant coefficient linear difference equations on the rational cones of the integer lattice

E. K. Leĭnartasa, T. I. Nekrasova

a Siberian Federal University, Krasnoyarsk, Russia
References:
Abstract: We obtain a sufficient solvability condition for Cauchy problems for a polynomial difference operator with constant coefficients. We prove that if the generating function of the Cauchy data of a homogeneous Cauchy problem lies in one of the classes of Stanley's hierarchy then the generating function of the solution belongs to the same class.
Keywords: higher-dimensional difference equations, Cauchy problem, generating function, $D$-finite Laurent series.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Y26.31.0006
Russian Foundation for Basic Research 14-01-00-544
This research was done at Siberian Federal University and supported by the Government of the Russian Federation (Grant 14.Y26.31.0006). The first author was also supported by the Russian Foundation for Basic Research (Grant 14-01-00-544).
Received: 10.11.2014
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 1, Pages 74–85
DOI: https://doi.org/10.1134/S0037446616010080
Bibliographic databases:
Document Type: Article
UDC: 517.55+517.96
Language: Russian
Citation: E. K. Leǐnartas, T. I. Nekrasova, “Constant coefficient linear difference equations on the rational cones of the integer lattice”, Sibirsk. Mat. Zh., 57:1 (2016), 98–112; Siberian Math. J., 57:1 (2016), 74–85
Citation in format AMSBIB
\Bibitem{LeiNek16}
\by E.~K.~Le{\v\i}nartas, T.~I.~Nekrasova
\paper Constant coefficient linear difference equations on the rational cones of the integer lattice
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 1
\pages 98--112
\mathnet{http://mi.mathnet.ru/smj2731}
\crossref{https://doi.org/10.17377/smzh.2016.57.108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3499854}
\elib{https://elibrary.ru/item.asp?id=26236932}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 1
\pages 74--85
\crossref{https://doi.org/10.1134/S0037446616010080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373234400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008502163}
Linking options:
  • https://www.mathnet.ru/eng/smj2731
  • https://www.mathnet.ru/eng/smj/v57/i1/p98
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :109
    References:73
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024