Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 1, Pages 85–97
DOI: https://doi.org/10.17377/smzh.2016.57.107
(Mi smj2730)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the disconjugacy property of an equation on a graph

R. Ch. Kulaevab

a Southern Mathematical Institute, Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz, Russia
b Khetagurov North Ossetian State University, Vladikavkaz, Russia
References:
Abstract: Under study is the disconjugacy theory of forth order equations on a geometric graph. The definition of disconjugacy is given in terms of a special fundamental system of solutions to a homogeneous equation. We establish some connections between the disconjugacy property and the positivity of the Green's functions for several classes of boundary value problems for forth order equation on a graph. We also state the maximum principle for a forth order equation on a graph and prove some properties of differential inequalities.
Keywords: graph, differential equation on a graph, disconjugacy, Green’s function, maximum principle, differential inequality.
Received: 11.04.2015
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 1, Pages 64–73
DOI: https://doi.org/10.1134/S0037446616010079
Bibliographic databases:
Document Type: Article
UDC: 517.955
Language: Russian
Citation: R. Ch. Kulaev, “On the disconjugacy property of an equation on a graph”, Sibirsk. Mat. Zh., 57:1 (2016), 85–97; Siberian Math. J., 57:1 (2016), 64–73
Citation in format AMSBIB
\Bibitem{Kul16}
\by R.~Ch.~Kulaev
\paper On the disconjugacy property of an equation on a~graph
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 1
\pages 85--97
\mathnet{http://mi.mathnet.ru/smj2730}
\crossref{https://doi.org/10.17377/smzh.2016.57.107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3499853}
\elib{https://elibrary.ru/item.asp?id=26236931}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 1
\pages 64--73
\crossref{https://doi.org/10.1134/S0037446616010079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373234400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008497201}
Linking options:
  • https://www.mathnet.ru/eng/smj2730
  • https://www.mathnet.ru/eng/smj/v57/i1/p85
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :71
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024