Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 1, Pages 10–24
DOI: https://doi.org/10.17377/smzh.2016.57.102
(Mi smj2725)
 

On one test for the switching separability of graphs modulo $q$

E. A. Bespalov, D. S. Krotov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: We consider graphs whose edges are marked by numbers (weights) from 1 to $q-1$ (with zero corresponding to the absence of an edge). A graph is additive if its vertices can be marked so that, for every two nonadjacent vertices, the sum of the marks modulo $q$ is zero, and for adjacent vertices, it equals the weight of the corresponding edge. A switching of a given graph is its sum modulo $q$ with some additive graph on the same set of vertices. A graph on $n$ vertices is switching separable if some of its switchings has no connected components of size greater than $n-2$. We consider the following separability test: If removing any vertex from $G$ leads to a switching separable graph then $G$ is switching separable. We prove this test for $q$ odd and characterize the set of exclusions for $q$ even. Connection is established between the switching separability of a graph and the reducibility of the $n$-ary quasigroup constructed from the graph.
Keywords: Seidel switching, separability, $n$-ary quasigroup.
Funding agency Grant number
Russian Science Foundation 14-11-00555
The authors were supported by the Russian Science Foundation (Grant 14-11-00555).
Received: 02.12.2014
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 1, Pages 7–17
DOI: https://doi.org/10.1134/S003744661601002X
Bibliographic databases:
Document Type: Article
UDC: 519.143
Language: Russian
Citation: E. A. Bespalov, D. S. Krotov, “On one test for the switching separability of graphs modulo $q$”, Sibirsk. Mat. Zh., 57:1 (2016), 10–24; Siberian Math. J., 57:1 (2016), 7–17
Citation in format AMSBIB
\Bibitem{BesKro16}
\by E.~A.~Bespalov, D.~S.~Krotov
\paper On one test for the switching separability of graphs modulo~$q$
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 1
\pages 10--24
\mathnet{http://mi.mathnet.ru/smj2725}
\crossref{https://doi.org/10.17377/smzh.2016.57.102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3499848}
\elib{https://elibrary.ru/item.asp?id=26236926}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 1
\pages 7--17
\crossref{https://doi.org/10.1134/S003744661601002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373234400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008471286}
Linking options:
  • https://www.mathnet.ru/eng/smj2725
  • https://www.mathnet.ru/eng/smj/v57/i1/p10
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :71
    References:46
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024