Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 5, Pages 1142–1153
DOI: https://doi.org/10.17377/smzh.2015.56.513
(Mi smj2703)
 

Ricci flow on contact manifolds

V. Pirhadi, A. Razavi

Department of Pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
References:
Abstract: This paper is devoted to Ricci flow on contact manifolds. We define the contact curvature flow and establish a short time existence. Meanwhile, we study a contact Ricci soliton and prove that every solution of the unnormalized contact curvature flow is a selfsimilar solution corresponding to a contact Ricci soliton which is a steady soliton. Finally we show that a time dependent family of contact Einstein, Sasakian, $\mathrm K$-contact, or $\eta$-Einstein $1$-forms $\eta_t$ is a solution of the normalized contact curvature flow if it is a conformal variation of an initial $1$-form $\eta_0$.
Keywords: contact manifold, Einstein manifold, Ricci flow, Ricci soliton.
Received: 22.07.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 5, Pages 912–921
DOI: https://doi.org/10.1134/S0037446615050134
Bibliographic databases:
Document Type: Article
UDC: 514.763
Language: Russian
Citation: V. Pirhadi, A. Razavi, “Ricci flow on contact manifolds”, Sibirsk. Mat. Zh., 56:5 (2015), 1142–1153; Siberian Math. J., 56:5 (2015), 912–921
Citation in format AMSBIB
\Bibitem{PirRaz15}
\by V.~Pirhadi, A.~Razavi
\paper Ricci flow on contact manifolds
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 5
\pages 1142--1153
\mathnet{http://mi.mathnet.ru/smj2703}
\crossref{https://doi.org/10.17377/smzh.2015.56.513}
\elib{https://elibrary.ru/item.asp?id=24817502}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 5
\pages 912--921
\crossref{https://doi.org/10.1134/S0037446615050134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363722400013}
\elib{https://elibrary.ru/item.asp?id=25203627}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944874279}
Linking options:
  • https://www.mathnet.ru/eng/smj2703
  • https://www.mathnet.ru/eng/smj/v56/i5/p1142
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :124
    References:72
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024