|
This article is cited in 3 scientific papers (total in 3 papers)
On the division problem for a tempered distribution that depends holomorphically on a parameter
A. L. Pavlov Donetsk National University, Donetsk, Ukraine
Abstract:
We give sufficient conditions ensuring a construction of solution to the equation
$$
\sum^m_{k=0}P_k(\sigma)\lambda^ku(\lambda)=f(\lambda),
$$
with $\sigma\in\mathbb R^n$ and $\lambda\in G\subset\mathbb C$, where $f(\lambda) and u(\lambda)$are tempered distributions depending holomorphically on $\lambda$, while the polynomial $P_m(\sigma)$ may have real zeros.
Keywords:
tempered distribution, regularization, Petrovskiĭ correct polynomial.
Received: 23.12.2014
Citation:
A. L. Pavlov, “On the division problem for a tempered distribution that depends holomorphically on a parameter”, Sibirsk. Mat. Zh., 56:5 (2015), 1130–1141; Siberian Math. J., 56:5 (2015), 901–911
Linking options:
https://www.mathnet.ru/eng/smj2702 https://www.mathnet.ru/eng/smj/v56/i5/p1130
|
Statistics & downloads: |
Abstract page: | 214 | Full-text PDF : | 82 | References: | 38 |
|