Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 5, Pages 961–981
DOI: https://doi.org/10.17377/smzh.2015.56.501
(Mi smj2691)
 

This article is cited in 1 scientific paper (total in 1 paper)

Integral theorems for the first passage time of an arbitrary boundary by a compound renewal process

A. A. Borovkovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (351 kB) Citations (1)
References:
Abstract: We obtain the integral limit theorems for the first passage time through an arbitrary remote boundary by a compound renewal process both for the cases of finite and infinite variance of the process. In the latter case, we assume that some distributions belong to the attraction domain of the stable law.
Keywords: compound renewal process, first passage time through an arbitrary boundary, law of the iterated logarithm, analog of the law of the iterated logarithm in the case of infinite variance.
Received: 01.06.2015
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 5, Pages 765–782
DOI: https://doi.org/10.1134/S0037446615050018
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. A. Borovkov, “Integral theorems for the first passage time of an arbitrary boundary by a compound renewal process”, Sibirsk. Mat. Zh., 56:5 (2015), 961–981; Siberian Math. J., 56:5 (2015), 765–782
Citation in format AMSBIB
\Bibitem{Bor15}
\by A.~A.~Borovkov
\paper Integral theorems for the first passage time of an arbitrary boundary by a~compound renewal process
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 5
\pages 961--981
\mathnet{http://mi.mathnet.ru/smj2691}
\crossref{https://doi.org/10.17377/smzh.2015.56.501}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492884}
\elib{https://elibrary.ru/item.asp?id=24817490}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 5
\pages 765--782
\crossref{https://doi.org/10.1134/S0037446615050018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363722400001}
\elib{https://elibrary.ru/item.asp?id=24963030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944873377}
Linking options:
  • https://www.mathnet.ru/eng/smj2691
  • https://www.mathnet.ru/eng/smj/v56/i5/p961
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :78
    References:44
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024