Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 4, Pages 896–908
DOI: https://doi.org/10.17377/smzh.2015.56.413
(Mi smj2685)
 

Ideal growth in metabelian Lie $p$-algebras

V. M. Petrogradskya, I. A. Subbotinb

a Department of Mathematics, University of Brasilia, Brasilia, Brazil
b Faculty of Mathematics and Information Technologies, Ulyanovsk State University, Ulyanovsk, Russia
References:
Abstract: Consider a finitely generated restricted Lie algebra $L$ over the finite field $\mathbb F_q$ and, given $n\ge0$, denote the number of restricted ideals $H\subset L$ with $\dim_{\mathbb F_q}L/H=n$ by $c_n(L)$. We show for the free metabelian restricted Lie algebra $L$ of finite rank that the ideal growth sequence grows superpolynomially; namely, there exist positive constants $\lambda_1$ and $\lambda_2$ such that $q^{\lambda_1n^2}\le c_n(L)\le q^{\lambda_2n^2}$ for $n$ large enough.
Keywords: restricted Lie algebra, metabelian Lie algebra, enumerative combinatorics, subgroup growth, subalgebra growth, ideal growth.
Received: 06.10.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 4, Pages 714–724
DOI: https://doi.org/10.1134/S0037446615040138
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: V. M. Petrogradsky, I. A. Subbotin, “Ideal growth in metabelian Lie $p$-algebras”, Sibirsk. Mat. Zh., 56:4 (2015), 896–908; Siberian Math. J., 56:4 (2015), 714–724
Citation in format AMSBIB
\Bibitem{PetSub15}
\by V.~M.~Petrogradsky, I.~A.~Subbotin
\paper Ideal growth in metabelian Lie $p$-algebras
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 4
\pages 896--908
\mathnet{http://mi.mathnet.ru/smj2685}
\crossref{https://doi.org/10.17377/smzh.2015.56.413}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492878}
\elib{https://elibrary.ru/item.asp?id=24817483}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 4
\pages 714--724
\crossref{https://doi.org/10.1134/S0037446615040138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359802500013}
\elib{https://elibrary.ru/item.asp?id=24007828}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939195427}
Linking options:
  • https://www.mathnet.ru/eng/smj2685
  • https://www.mathnet.ru/eng/smj/v56/i4/p896
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024