Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 4, Pages 878–895
DOI: https://doi.org/10.17377/smzh.2015.56.412
(Mi smj2684)
 

This article is cited in 1 scientific paper (total in 1 paper)

An eigenvalue multiplicity formula for the Schur complement of a $3\times3$ block operator matrix

M. É. Muminova, T. Kh. Rasulovb

a University of Technology, Skudai, Malaysia
b Bukhara State University, Bukhara, Uzbekistan
Full-text PDF (363 kB) Citations (1)
References:
Abstract: We consider the Schur complement $S(\lambda)$ with real spectral parameter $\lambda$ corresponding to a certain $3\times3$ block operator matrix. In our case the essential spectrum of $S(\lambda)$ can have gaps. We obtain formulas for the number and multiplicities of eigenvalues belonging to an arbitrary interval outside the essential spectrum of $S(\lambda)$.
Keywords: Schur complement, bosonic Fock space, block operator matrix, creation and annihilation operators, trace class operator, essential and discrete spectra, Weyl's inequality.
Received: 28.10.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 4, Pages 699–713
DOI: https://doi.org/10.1134/S0037446615040126
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: M. É. Muminov, T. Kh. Rasulov, “An eigenvalue multiplicity formula for the Schur complement of a $3\times3$ block operator matrix”, Sibirsk. Mat. Zh., 56:4 (2015), 878–895; Siberian Math. J., 56:4 (2015), 699–713
Citation in format AMSBIB
\Bibitem{MumRas15}
\by M.~\'E.~Muminov, T.~Kh.~Rasulov
\paper An eigenvalue multiplicity formula for the Schur complement of a~$3\times3$ block operator matrix
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 4
\pages 878--895
\mathnet{http://mi.mathnet.ru/smj2684}
\crossref{https://doi.org/10.17377/smzh.2015.56.412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492877}
\elib{https://elibrary.ru/item.asp?id=24817482}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 4
\pages 699--713
\crossref{https://doi.org/10.1134/S0037446615040126}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359802500012}
\elib{https://elibrary.ru/item.asp?id=24655158}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939134114}
Linking options:
  • https://www.mathnet.ru/eng/smj2684
  • https://www.mathnet.ru/eng/smj/v56/i4/p878
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :282
    References:83
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024