|
This article is cited in 1 scientific paper (total in 1 paper)
An eigenvalue multiplicity formula for the Schur complement of a $3\times3$ block operator matrix
M. É. Muminova, T. Kh. Rasulovb a University of Technology, Skudai, Malaysia
b Bukhara State University, Bukhara, Uzbekistan
Abstract:
We consider the Schur complement $S(\lambda)$ with real spectral parameter $\lambda$ corresponding to a certain $3\times3$ block operator matrix. In our case the essential spectrum of $S(\lambda)$ can have gaps. We obtain formulas for the number and multiplicities of eigenvalues belonging to an arbitrary interval outside the essential spectrum of $S(\lambda)$.
Keywords:
Schur complement, bosonic Fock space, block operator matrix, creation and annihilation operators, trace class operator, essential and discrete spectra, Weyl's inequality.
Received: 28.10.2014
Citation:
M. É. Muminov, T. Kh. Rasulov, “An eigenvalue multiplicity formula for the Schur complement of a $3\times3$ block operator matrix”, Sibirsk. Mat. Zh., 56:4 (2015), 878–895; Siberian Math. J., 56:4 (2015), 699–713
Linking options:
https://www.mathnet.ru/eng/smj2684 https://www.mathnet.ru/eng/smj/v56/i4/p878
|
Statistics & downloads: |
Abstract page: | 351 | Full-text PDF : | 292 | References: | 84 | First page: | 30 |
|