Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 4, Pages 853–877
DOI: https://doi.org/10.17377/smzh.2015.56.411
(Mi smj2683)
 

This article is cited in 5 scientific papers (total in 5 papers)

Zeta-invariants of the Steklov spectrum of a planar domain

E. G. Mal'kovichab, V. A. Sharafutdinovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (404 kB) Citations (5)
References:
Abstract: The classical inverse problem of the determination of a smooth simply-connected planar domain by its Steklov spectrum [1] is equivalent to the problem of the reconstruction, up to conformal equivalence, a positive function $a\in C^\infty(\mathbb S)$ on the unit circle $\mathbb S=\{e^{i\theta}\}$ from the spectrum of the operator $a\Lambda_e$, where $\Lambda_e=(-d^2/d\theta^2)^{1/2}$. We introduce $2k$-forms $Z_k(a)$ ($k=1,2,\dots$) of the Fourier coefficients of $a$, called the zeta-invariants. These invariants are determined by the eigenvalues of $a\Lambda_e$. We study some properties of the forms $Z_k(a)$; in particular, their invariance under the conformal group. A few open questions about zeta-invariants is posed at the end of the article.
Keywords: Steklov spectrum, Dirichlet-to-Neumann operator, zeta-function, inverse spectral problem.
Received: 25.03.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 4, Pages 678–698
DOI: https://doi.org/10.1134/S0037446615040114
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: E. G. Mal'kovich, V. A. Sharafutdinov, “Zeta-invariants of the Steklov spectrum of a planar domain”, Sibirsk. Mat. Zh., 56:4 (2015), 853–877; Siberian Math. J., 56:4 (2015), 678–698
Citation in format AMSBIB
\Bibitem{MalSha15}
\by E.~G.~Mal'kovich, V.~A.~Sharafutdinov
\paper Zeta-invariants of the Steklov spectrum of a~planar domain
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 4
\pages 853--877
\mathnet{http://mi.mathnet.ru/smj2683}
\crossref{https://doi.org/10.17377/smzh.2015.56.411}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492876}
\elib{https://elibrary.ru/item.asp?id=24817481}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 4
\pages 678--698
\crossref{https://doi.org/10.1134/S0037446615040114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359802500011}
\elib{https://elibrary.ru/item.asp?id=24007720}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939189452}
Linking options:
  • https://www.mathnet.ru/eng/smj2683
  • https://www.mathnet.ru/eng/smj/v56/i4/p853
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:301
    Full-text PDF :83
    References:54
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024