Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 4, Pages 790–797
DOI: https://doi.org/10.17377/smzh.2015.56.406
(Mi smj2678)
 

This article is cited in 4 scientific papers (total in 4 papers)

Finite $\pi$-groups with normal injectors

N. T. Vorob'ev, A. V. Martsinkevich

Masherov Vitebsk State University, Vitebsk, Belarus
Full-text PDF (312 kB) Citations (4)
References:
Abstract: Denote by $\mathbb P$ the set of all primes and take a nonempty set $\varnothing\ne\pi\subseteq\mathbb P$. A Fitting class $\mathfrak F\ne(1)$ is called normal in the class $\mathfrak S_\pi$ of all finite soluble $\pi$-groups or $\pi$-normal, whenever $\mathfrak{F\subseteq S}_\pi$ and for every $G\in\mathfrak S_\pi$ its $\mathfrak F$-injectors constitute a normal subgroup of $G$.
We study the properties of $\pi$-normal Fitting classes. Using Lockett operators, we prove a criterion for the $\pi$-normality of products of Fitting classes. A $\pi$-normal Fitting class is normal in the case $\pi=\mathbb P$. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of $\pi$-normal Fitting classes.
Keywords: Fitting class, $\pi$-normal Fitting class, product of Fitting classes, lattice join of Fitting classes.
Received: 15.07.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 4, Pages 624–630
DOI: https://doi.org/10.1134/S0037446615040060
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: N. T. Vorob'ev, A. V. Martsinkevich, “Finite $\pi$-groups with normal injectors”, Sibirsk. Mat. Zh., 56:4 (2015), 790–797; Siberian Math. J., 56:4 (2015), 624–630
Citation in format AMSBIB
\Bibitem{VorMar15}
\by N.~T.~Vorob'ev, A.~V.~Martsinkevich
\paper Finite $\pi$-groups with normal injectors
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 4
\pages 790--797
\mathnet{http://mi.mathnet.ru/smj2678}
\crossref{https://doi.org/10.17377/smzh.2015.56.406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492871}
\elib{https://elibrary.ru/item.asp?id=24817476}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 4
\pages 624--630
\crossref{https://doi.org/10.1134/S0037446615040060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359802500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939142679}
Linking options:
  • https://www.mathnet.ru/eng/smj2678
  • https://www.mathnet.ru/eng/smj/v56/i4/p790
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :90
    References:51
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024