Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 4, Pages 723–731
DOI: https://doi.org/10.17377/smzh.2015.56.401
(Mi smj2673)
 

The set of nondegenerate flexible polyhedra of a prescribed combinatorial structure is not always algebraic

V. A. Alexandrovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Physics Department, Novosibirsk, Russia
References:
Abstract: We construct some example of a closed nondegenerate nonflexible polyhedron $P$ in Euclidean $3$-space that is the limit of a sequence of nondegenerate flexible polyhedra each of which is combinatorially equivalent to $P$. This implies that the set of nondegenerate flexible polyhedra combinatorially equivalent to $P$ is not algebraic.
Keywords: flexible polyhedron, dihedral angle, Bricard octahedron, algebraic set.
Received: 25.11.2013
Revised: 15.06.2015
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 4, Pages 569–574
DOI: https://doi.org/10.1134/S0037446615040011
Bibliographic databases:
Document Type: Article
UDC: 514.113.5
Language: Russian
Citation: V. A. Alexandrov, “The set of nondegenerate flexible polyhedra of a prescribed combinatorial structure is not always algebraic”, Sibirsk. Mat. Zh., 56:4 (2015), 723–731; Siberian Math. J., 56:4 (2015), 569–574
Citation in format AMSBIB
\Bibitem{Ale15}
\by V.~A.~Alexandrov
\paper The set of nondegenerate flexible polyhedra of a~prescribed combinatorial structure is not always algebraic
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 4
\pages 723--731
\mathnet{http://mi.mathnet.ru/smj2673}
\crossref{https://doi.org/10.17377/smzh.2015.56.401}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492866}
\elib{https://elibrary.ru/item.asp?id=24817471}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 4
\pages 569--574
\crossref{https://doi.org/10.1134/S0037446615040011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359802500001}
\elib{https://elibrary.ru/item.asp?id=24005265}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939124817}
Linking options:
  • https://www.mathnet.ru/eng/smj2673
  • https://www.mathnet.ru/eng/smj/v56/i4/p723
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :70
    References:52
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024