Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 3, Pages 650–662
DOI: https://doi.org/10.17377/smzh.2015.56.315
(Mi smj2667)
 

This article is cited in 4 scientific papers (total in 4 papers)

Axiomatizability and completeness of the class of injective acts over a commutative monoid or a group

A. A. Stepanovaab

a Far Eastern Federal University, Vladivostok, Russia
b Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
Full-text PDF (337 kB) Citations (4)
References:
Abstract: We study monoids $S$ over which the class of injective $S$-acts is axiomatizable, complete, and model complete. We prove that, for a countable commutative monoid or a countable group $S$, the class of injective $S$-acts is axiomatizable if and only if $S$ is a finitely generated monoid. We show that there is no nontrivial monoid nor a group the class of injective acts over which is complete, model complete, or categorical.
Keywords: axiomatizable class, complete class, model complete class, categorical class, act, injective act.
Received: 15.09.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 3, Pages 516–525
DOI: https://doi.org/10.1134/S0037446615030155
Bibliographic databases:
Document Type: Article
UDC: 510.67+512.56
Language: Russian
Citation: A. A. Stepanova, “Axiomatizability and completeness of the class of injective acts over a commutative monoid or a group”, Sibirsk. Mat. Zh., 56:3 (2015), 650–662; Siberian Math. J., 56:3 (2015), 516–525
Citation in format AMSBIB
\Bibitem{Ste15}
\by A.~A.~Stepanova
\paper Axiomatizability and completeness of the class of injective acts over a~commutative monoid or a~group
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 3
\pages 650--662
\mathnet{http://mi.mathnet.ru/smj2667}
\crossref{https://doi.org/10.17377/smzh.2015.56.315}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3442809}
\elib{https://elibrary.ru/item.asp?id=24795713}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 3
\pages 516--525
\crossref{https://doi.org/10.1134/S0037446615030155}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356826600015}
\elib{https://elibrary.ru/item.asp?id=23985177}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84934976110}
Linking options:
  • https://www.mathnet.ru/eng/smj2667
  • https://www.mathnet.ru/eng/smj/v56/i3/p650
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024