Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 2, Pages 455–462 (Mi smj2650)  

This article is cited in 1 scientific paper (total in 1 paper)

Recovery of the discontinuities of the coefficient of a Sturm–Liouville operator in impedance form

A. A. Sedipkovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (290 kB) Citations (1)
References:
Abstract: Under study is the inverse spectral problem for a Sturm–Liouville operator in impedance form. We prove that the discontinuities of the impedance are uniquely determined by the asymptotics of the Jost function at infinity. Some algorithm is constructed that makes it possible to recover the discontinuities of the impedance.
Keywords: inverse spectral problem, impedance, Jost function.
Received: 19.11.2013
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 2, Pages 367–372
DOI: https://doi.org/10.1134/S0037446615020160
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: A. A. Sedipkov, “Recovery of the discontinuities of the coefficient of a Sturm–Liouville operator in impedance form”, Sibirsk. Mat. Zh., 56:2 (2015), 455–462; Siberian Math. J., 56:2 (2015), 367–372
Citation in format AMSBIB
\Bibitem{Sed15}
\by A.~A.~Sedipkov
\paper Recovery of the discontinuities of the coefficient of a~Sturm--Liouville operator in impedance form
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 2
\pages 455--462
\mathnet{http://mi.mathnet.ru/smj2650}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3381252}
\elib{https://elibrary.ru/item.asp?id=23112851}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 2
\pages 367--372
\crossref{https://doi.org/10.1134/S0037446615020160}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353794200016}
\elib{https://elibrary.ru/item.asp?id=24027331}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928808163}
Linking options:
  • https://www.mathnet.ru/eng/smj2650
  • https://www.mathnet.ru/eng/smj/v56/i2/p455
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025