Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 2, Pages 420–435 (Mi smj2647)  

This article is cited in 7 scientific papers (total in 7 papers)

On linear summability methods of fourier series in polynomials orthogonal in a discrete Sobolev space

B. P. Osilenker

Moscow State University of Civil Engineering, Moscow, Russia
Full-text PDF (334 kB) Citations (7)
References:
Abstract: Under study are the discrete Sobolev spaces with the inner product
\begin{align*} \int^1_{-1}f(x)g(x)w(x)\,dx&+A_1f(1)g(1)\\ &+B_1f(-1)g(-1)+A_2f'(1)g'(1)+B_2f'(-1)g'(-1)=\langle f,g\rangle. \end{align*}
Some results are presented on linear summation methods for Fourier series in orthonormal polynomials of discrete Sobolev spaces.
Keywords: discrete Sobolev space, orthogonal polynomial, Fourier series, linear summation method, Cesàro method, symmetric Gegenbauer–Sobolev polynomials.
Received: 14.02.2013
Revised: 07.07.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 2, Pages 339–351
DOI: https://doi.org/10.1134/S0037446615020135
Bibliographic databases:
Document Type: Article
UDC: 517.538.3
Language: Russian
Citation: B. P. Osilenker, “On linear summability methods of fourier series in polynomials orthogonal in a discrete Sobolev space”, Sibirsk. Mat. Zh., 56:2 (2015), 420–435; Siberian Math. J., 56:2 (2015), 339–351
Citation in format AMSBIB
\Bibitem{Osi15}
\by B.~P.~Osilenker
\paper On linear summability methods of fourier series in polynomials orthogonal in a~discrete Sobolev space
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 2
\pages 420--435
\mathnet{http://mi.mathnet.ru/smj2647}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3381249}
\elib{https://elibrary.ru/item.asp?id=23112848}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 2
\pages 339--351
\crossref{https://doi.org/10.1134/S0037446615020135}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353794200013}
\elib{https://elibrary.ru/item.asp?id=24027143}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928783319}
Linking options:
  • https://www.mathnet.ru/eng/smj2647
  • https://www.mathnet.ru/eng/smj/v56/i2/p420
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :93
    References:72
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024