Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 2, Pages 409–419 (Mi smj2646)  

This article is cited in 1 scientific paper (total in 1 paper)

The monodromy of a general algebraic function

E. N. Mikhalkin

Siberian Federal University, Krasnoyarsk, Russia
Full-text PDF (397 kB) Citations (1)
References:
Abstract: We consider a general reduced algebraic equation of degree $n$ with complex coefficients. The solution to this equation, a multifunction, is called a general algebraic function. In the coefficient space we consider the discriminant set $\nabla$ of the equation and choose in its complement the maximal polydisk domain $D$ containing the origin. We describe the monodromy of the general algebraic function in a neighborhood of $D$. In particular, we prove that $\&nabla$ intersects the boundary $\partial D$ along $n$ real algebraic surfaces $\mathscr S^{(j)}$ of dimension $n-2$. Furthermore, every branch $y_j(x)$ of the general algebraic function ramifies in $D$ only along the pair of surfaces $\mathscr S^{(j)}$ and $\mathscr S^{(j-1)}$.
Keywords: algebraic equation, hypergeometric function, discriminant, integral representation, monodromy.
Received: 18.07.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 2, Pages 330–338
DOI: https://doi.org/10.1134/S0037446615020123
Bibliographic databases:
Document Type: Article
UDC: 517.55+512.626
Language: Russian
Citation: E. N. Mikhalkin, “The monodromy of a general algebraic function”, Sibirsk. Mat. Zh., 56:2 (2015), 409–419; Siberian Math. J., 56:2 (2015), 330–338
Citation in format AMSBIB
\Bibitem{Mik15}
\by E.~N.~Mikhalkin
\paper The monodromy of a~general algebraic function
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 2
\pages 409--419
\mathnet{http://mi.mathnet.ru/smj2646}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3381248}
\elib{https://elibrary.ru/item.asp?id=23112847}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 2
\pages 330--338
\crossref{https://doi.org/10.1134/S0037446615020123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353794200012}
\elib{https://elibrary.ru/item.asp?id=24027138}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928782286}
Linking options:
  • https://www.mathnet.ru/eng/smj2646
  • https://www.mathnet.ru/eng/smj/v56/i2/p409
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :133
    References:48
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024