Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 2, Pages 282–289 (Mi smj2638)  

This article is cited in 11 scientific papers (total in 11 papers)

On two classes of nonlinear dynamical systems: The four-dimensional case

N. B. Ayupovaab, V. P. Golubyatnikovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: We consider two four-dimensional piecewise linear dynamical systems of chemical kinetics. For one of them, we give an explicit construction of a hypersurface that separates the attraction basins of two stable equilibrium points and contains an unstable cycle of this system. For the other system, we prove the existence of a trajectory not contained in the attraction basin of the stable cycle of this system described earlier by Glass and Pasternack. The homotopy types of the phase portraits of these two systems are compared.
Keywords: nonlinear dynamical system, cycle, invariant manifold, retract.
Received: 19.06.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 2, Pages 231–236
DOI: https://doi.org/10.1134/S0037446615020044
Bibliographic databases:
Document Type: Article
UDC: 514.745.82
Language: Russian
Citation: N. B. Ayupova, V. P. Golubyatnikov, “On two classes of nonlinear dynamical systems: The four-dimensional case”, Sibirsk. Mat. Zh., 56:2 (2015), 282–289; Siberian Math. J., 56:2 (2015), 231–236
Citation in format AMSBIB
\Bibitem{AyuGol15}
\by N.~B.~Ayupova, V.~P.~Golubyatnikov
\paper On two classes of nonlinear dynamical systems: The four-dimensional case
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 2
\pages 282--289
\mathnet{http://mi.mathnet.ru/smj2638}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3381240}
\elib{https://elibrary.ru/item.asp?id=23112839}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 2
\pages 231--236
\crossref{https://doi.org/10.1134/S0037446615020044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353794200004}
\elib{https://elibrary.ru/item.asp?id=24027182}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928785205}
Linking options:
  • https://www.mathnet.ru/eng/smj2638
  • https://www.mathnet.ru/eng/smj/v56/i2/p282
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :74
    References:57
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024