Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 2, Pages 265–281 (Mi smj2637)  

This article is cited in 2 scientific papers (total in 2 papers)

An integral geometry underdetermined problem for a family of curves

D. S. Anikonovab, D. S. Konovalovaa

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (340 kB) Citations (2)
References:
Abstract: In a general integral geometry problem, there are given the integrals of an unknown function over certain manifolds. The traditional statement of the problem consists in determining the integrand. We consider the case of an underdetermined problem when the unknown functions depend on a greater number of variables than the given integrals. These situations appear in a few applied problems when a rather complicated mathematical model is used and no a priori information is available. For overcoming the lack of appropriate data, we pose the problem of finding part of the information unknown; namely, we search only for the discontinuity surfaces of the integrand. The corresponding uniqueness theorem is proved. The present paper finalizes our studies into the case of integration over one-dimensional manifolds. In the previous articles we considered similar problems in the case of integration over straight lines. In this paper the same result is proved for the integration of unknown functions over unknown curves.
Keywords: singular integral, integral geometry, boundary determination problem, tomography, transport equation.
Received: 22.05.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 2, Pages 217–230
DOI: https://doi.org/10.1134/S0037446615020032
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: D. S. Anikonov, D. S. Konovalova, “An integral geometry underdetermined problem for a family of curves”, Sibirsk. Mat. Zh., 56:2 (2015), 265–281; Siberian Math. J., 56:2 (2015), 217–230
Citation in format AMSBIB
\Bibitem{AniKon15}
\by D.~S.~Anikonov, D.~S.~Konovalova
\paper An integral geometry underdetermined problem for a~family of curves
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 2
\pages 265--281
\mathnet{http://mi.mathnet.ru/smj2637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3381239}
\elib{https://elibrary.ru/item.asp?id=23112838}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 2
\pages 217--230
\crossref{https://doi.org/10.1134/S0037446615020032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353794200003}
\elib{https://elibrary.ru/item.asp?id=24027186}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928785530}
Linking options:
  • https://www.mathnet.ru/eng/smj2637
  • https://www.mathnet.ru/eng/smj/v56/i2/p265
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :55
    References:62
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024