Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 1, Pages 36–64 (Mi smj2620)  

This article is cited in 21 scientific papers (total in 21 papers)

Large deviation principles for the finite-dimensional distributions of compound renewal processes

A. A. Borovkov, A. A. Mogul'skiĭ

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: The paper deals with the large deviation probabilities for compound renewal processes. We establish the local and “integral” principles of large deviations in the state space of the process (i.e. for the value of the process at time $T$ as $T\to\infty$). We also find conditions for asymptotically weak dependence of the increments of the processes (in the crude asymptotics sense) and prove the local and “integral” principles of large deviations for the finite-dimensional distributions of the process.
Keywords: compound renewal process, compound renewal process with stationary increments, renewal function, deviation rate function, second deviation rate function, large deviation principle, local large deviation principle.
Received: 25.08.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 1, Pages 28–53
DOI: https://doi.org/10.1134/S0037446615010048
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skiǐ, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Sibirsk. Mat. Zh., 56:1 (2015), 36–64; Siberian Math. J., 56:1 (2015), 28–53
Citation in format AMSBIB
\Bibitem{BorMog15}
\by A.~A.~Borovkov, A.~A.~Mogul'ski{\v\i}
\paper Large deviation principles for the finite-dimensional distributions of compound renewal processes
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 1
\pages 36--64
\mathnet{http://mi.mathnet.ru/smj2620}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3407938}
\elib{https://elibrary.ru/item.asp?id=23112821}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 1
\pages 28--53
\crossref{https://doi.org/10.1134/S0037446615010048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350510300004}
\elib{https://elibrary.ru/item.asp?id=24027243}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928795667}
Linking options:
  • https://www.mathnet.ru/eng/smj2620
  • https://www.mathnet.ru/eng/smj/v56/i1/p36
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:444
    Full-text PDF :125
    References:58
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024