|
Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 1, Pages 27–35
(Mi smj2619)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Paley spaces
S. V. Astashkina, E. M. Semenovb a Samara State University, Samara, Russia
b Voronezh State University, Voronezh, Russia
Abstract:
Let $x$ be an integrable function on $[0,1]$ and let $Px$ be the Paley function constructed from the expansion of $x$ in the Fourier–Haar series. If $E$ is a rearrangement invariant space on $[0,1]$ then $P(E)$ stands for the space with the norm $\|Px\|_E$. Among other results, we prove that $P(E)$ is reflexive if and only if so is $E$.
Keywords:
rearrangement invariant space, Haar function, Paley function, real interpolation method.
Received: 25.12.2013
Citation:
S. V. Astashkin, E. M. Semenov, “Paley spaces”, Sibirsk. Mat. Zh., 56:1 (2015), 27–35; Siberian Math. J., 56:1 (2015), 21–27
Linking options:
https://www.mathnet.ru/eng/smj2619 https://www.mathnet.ru/eng/smj/v56/i1/p27
|
Statistics & downloads: |
Abstract page: | 306 | Full-text PDF : | 83 | References: | 50 | First page: | 21 |
|